DFS和BFS(无向图)Java实现
package practice; import java.util.Iterator;
import java.util.Stack; import edu.princeton.cs.algs4.*; public class TestMain {
public static void main(String[] args) {
Graph a = new Graph(6);
a.addEdge(2, 4);
a.addEdge(2, 3);
a.addEdge(1, 2);
a.addEdge(0, 5);
a.addEdge(0, 1);
a.addEdge(0, 2);
a.addEdge(3, 4);
a.addEdge(3, 5);
System.out.println(a); DisposeMap df = new DisposeMap(a);
/*df.dfs(0);
System.out.println(df.hasPathTo(1));
System.out.println(df.hasPathTo(2));
Stack<Integer> aStack = df.pathTo(1);
while (!aStack.isEmpty()) {
System.out.print(aStack.pop() + "->");
}
System.out.println("end");*/ df.bfs(0);
for (int i = 0; i < 6; i++) {
System.out.println(df.marked(i));
}
Stack<Integer> aStack = df.pathTo(4);
while (!aStack.isEmpty()) {
System.out.print(aStack.pop() + "->");
}
System.out.println("end");
}
} /*
* 图处理dispose
*/
class DisposeMap {
private boolean[] marked; //将已经搜素过的节点储存为true
private int count = 0;
private Graph G;
private int s; //起点
private int[] edgeTo; //edgeTo[w] = v,w为图中的节点,v为它的父节点 public DisposeMap(Graph G) {
this.G = G; marked = new boolean[G.V];
edgeTo = new int[G.V];
for (int i = 0; i < marked.length; i++) {
marked[i] = false;
}
}
/*
* 深度优先搜索,储存以s为起点所能到达的所有点
*/
public void dfs(int s) {
marked[s] = true; count++;
System.out.println("Search" + s);
for (Integer b : G.adj(s)) { //搜索一个节点的相邻的第一个没有被标记过的节点
if (marked[b] == false) { //如果没有搜索过这个节点,就搜索它
edgeTo[b] = s;
dfs(b);
}
}
}
/*
* 广度优先搜索
*/
public void bfs(int s) {
edu.princeton.cs.algs4.Queue<Integer> queue = new Queue<Integer>();
queue.enqueue(s);
marked[s] = true; while (!queue.isEmpty()) {
Integer temp = queue.dequeue();
for (Integer b : G.adj(temp)) { //搜索一个节点的所有的相邻的节点
if (marked[b] == false) { //如果没有搜索过这个节点,就搜索它
queue.enqueue(b);
edgeTo[b] = temp;
marked[b] = true;
}
}
}
}
/*
* 查看某点是否被标记
*/
public boolean marked(int w) { return marked[w];}
/*
* 搜索了几个点
*/
public int count() { return count;}
/*
* 是否存在s到v的路径
*/
public boolean hasPathTo(int v) {
return marked(v);
}
/*
* s到v的路径,有则返回一个Stack,没有则返回null
*/
public Stack<Integer> pathTo(int v) {
Stack<Integer> a = new Stack<Integer>();
for (int i = v; i != s; i = edgeTo[i])
a.push(i);
a.push(s);
return a;
}
} /*
* 图
*/
class Graph {
Bag<Integer>[] graph; //这里使用背包的数组,邻借表
int V;
int E; public Graph(int V) {
this.V = V;
graph = (Bag<Integer>[]) new Bag[V];
for (int i = 0; i < graph.length; i++) {
graph[i] = (Bag<Integer>) new Bag();
}
}
/*
* 返回顶点数
*/
public int V() { return V;}
/*
* 返回边数
*/
public int E() { return E;}
/*
* 向图中添加一条边
*/
public void addEdge(int v, int w) {
graph[v].add(w);
graph[w].add(v);
E++;
}
/*
* 和v相邻的所有顶点
*/
public Iterable<Integer> adj(int v) {
return graph[v];
}
/*
* 计算v的度数
*/
public static int degree(Graph G, int v) {
int degree = 0;
for (Integer bag : G.graph[v]) degree++;
return degree;
}
@Override
public String toString() {
String s = V + " vertices, " + E + " edges\n";
for (int v = 0; v < V; v++) {
s += v + ": ";
for (Integer integer : this.adj(v)) {
s += integer + " ";
}
s += "\n";
}
return s;
}
} /*
* 背包
*/
class Bag<T> implements Iterable<T> {
Node first; private class Node {
T value;
Node next;
} public void add(T value) {
Node oldfirst = first;
first = new Node();
first.value = value;
first.next = oldfirst;
} public void delete(T value) { } @Override
public Iterator<T> iterator() {
return new BagIterator();
} private class BagIterator implements Iterator<T> {
Node node = first; @Override
public boolean hasNext() {
return node != null;
} @Override
public T next() {
T tempt = node.value;
node = node.next;
return tempt;
}
}
}
代码中的无向图

图的储存-邻接表示意图

DFS和BFS(无向图)Java实现的更多相关文章
- Java数据结构——图的DFS和BFS
1.图的DFS: 即Breadth First Search,深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而B节点又是A的一个邻近节点,则DFS访问A节点后再访 ...
- Clone Graph leetcode java(DFS and BFS 基础)
题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...
- 数据结构(12) -- 图的邻接矩阵的DFS和BFS
//////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- 数据结构基础(21) --DFS与BFS
DFS 从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈). //使用邻接矩阵存储的无向图的深度 ...
- 判断图连通的三种方法——dfs,bfs,并查集
Description 如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的.现在给定一张无向图,判断它是否是连通的. Input 第一行有2个整数n和m(0 < n,m < ...
- 图的DFS与BFS遍历
一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...
- 列出连通集(DFS及BFS遍历图) -- 数据结构
题目: 7-1 列出连通集 (30 分) 给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集.假设顶点从0到N−1编号.进行搜索时,假设我们总是从编号最小的顶点出发,按编号递 ...
- 图论相关知识(DFS、BFS、拓扑排序、最小代价生成树、最短路径)
图的存储 假设是n点m边的图: 邻接矩阵:很简单,但是遍历图的时间复杂度和空间复杂度都为n^2,不适合数据量大的情况 邻接表:略微复杂一丢丢,空间复杂度n+m,遍历图的时间复杂度为m,适用情况更广 前 ...
随机推荐
- WAS 部署 Birt 报表出现 error.CannotStartupOSGIPlatform 和 更新web.xml
在WAS7.0中部署Birt报表会出现error.CannotStartupOSGIPlatform错误,通常需要这样修改 1.依次打开Applications->WebSphere enter ...
- 【原创】07. ajax请求,解决sendRedirect 无效
介绍: 后台基于旧代码用的Filter验证,若 Session过期,则跳转登陆页面 前台框架:EasyUI 问题: 最初后台验证不通过: 1 httpServletResponse.sendRedir ...
- log4go的日志滚动处理——适应生产环境的需要
日志处理有三类使用环境,开发环境DE,测试环境TE,生产环境PE. 前两类可以看成是一类,重要的是屏幕显示--termlog.生产环境中主要用的是socklog 和 filelog,即网络传输日志和文 ...
- hdu 6047 Maximum Sequence(贪心)
Description Steph is extremely obsessed with "sequence problems" that are usually seen on ...
- [dubbo实战] dubbo+zookeeper伪集群搭建
zookeeper作为注册中心,服务器和客户端都要访问,如果有大量的并发,肯定会有等待.所以可以通过zookeeper集群解决. 一.为什么需要zookeeper呢? 大部分分布式应用需要一个主控.协 ...
- ue4 C++ 导入图片
void SDrawHouseTypeTools::OnButtonClickLoadImage() { // 当前如果是在硬装模块,则可进行导入户型操作 FHardEdM ...
- java垃圾回收过程
对于年轻代,刚开始创建的对象都是放置在eden区的,而将年轻代分成3个部分,主要是为了生命周期短的对象尽量留在年轻代.当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survio ...
- 白帽子之路首章:Footprinting, TARGET ACQUISITION
*Disclaimer: All materials provided on this blog are for educational purposes only. The author and o ...
- Linux操作系统-命令-vmstat
叨叨两句 涉及监控服务器性能的命令,除了有vmstat之外,还有top.iostat.netstat.本文只是介绍一下这4个命令中的1个.剩下的3个命令可以参考以下网上的资料就差不多能会了. 推荐to ...
- Python第一行代码
Python版本:Python 3.6.1 0x01 命令行交互 在交互式环境的提示符>>>下,直接输入代码,按回车,就可以立刻得到代码执行结果.现在,试试输入100+200,看看计 ...