1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 9281  Solved: 3719
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5  4
3
4
2
1
4

Sample Output

1
 
 
 
【题解】
 
看到题很容易想到动态规划。
 
用f[i]表示装前i个玩具所需的费用,sum数组维护前缀和。
 
状态转移方程:f[i]=min{f[j]+(sum[i]-sum[j]+i-j-1-l)^2}  (0<j<i)
 
如果在维护前缀和时令sum[i]=sum[i-1]+a[i]+i, 设c=l+1
 
那么则有:f[i]=min{f[j]+(sum[i]-sum[j]-c)^2}  (0<j<i)
 
如果拆开平方就会出现sum[i]*sum[j]这样的项,那么我们考虑斜率优化。
 
假设k~i比j~i更优,则f[k]+sum[i]^2+sum[k]^2+c^2-2sum[i]sum[k]-2c*sum[i]-2c*sum[k]<f[j]+sum[i]^2+sum[j]^2+c^2-2sum[i]sum[j]-2c*sum[i]-2c*sum[j];
 
化简得:(f[k]-f[j]+sum[k]^2-sum[j]^2)/(sum[k]-sum[j])<2(sum[i]-c)
 
这就是斜率表达式了,接下来就是套路。。。。。。
 
注意用long long,否则会爆掉。(被这个坑了,一直wa)
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<ctime>
#include<cstdlib>
using namespace std;
long long n,l,c,a[],sum[],q[],f[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
double slop(int x,int y) //计算斜率
{return (f[x]-f[y]+sum[x]*sum[x]-sum[y]*sum[y])*1.0/(sum[x]-sum[y]);}
int main()
{
n=read(); l=read(); c=l+;
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++) sum[i]+=i;
int l=,r=;
for(int i=;i<=n;i++)
{
while(l<r&&slop(q[l],q[l+])<=*(sum[i]-c)) l++;
int t=q[l];
f[i]=f[t]+(sum[i]-sum[t]-c)*(sum[i]-sum[t]-c);
while(l<r&&slop(q[r],i)<slop(q[r-],q[r])) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
 

【bzoj1010】[HNOI2008]玩具装箱toy的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

  3. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  4. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  5. [BZOJ1010][HNOI2008]玩具装箱toy 解题报告

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  8. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  9. 题解【bzoj1010 [HNOI2008]玩具装箱TOY】

    斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...

  10. 【斜率优化】BZOJ1010 [HNOI2008]玩具装箱toy

    [题目大意] P教授有编号为1...N的N件玩具,第i件玩具长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.如果将第i件玩具到第j个玩具放到一 个容器中,那么容器的长度将为 x ...

随机推荐

  1. MongoDB用户管理

    1. 创建一个超级用户 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 use admin db.createUser(   {     user: "adminUse ...

  2. php获取图片宽高等属性

    <?php function getImageInfo($image) {     $imageInfo = getimagesize($image);     if ($imageInfo ! ...

  3. PHP代码优化的53个细节

    PHP代码优化的53个细节,常见而重要的php优化策略. 用单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量,单引号则不会,注意:只有echo能这么做,它是一 ...

  4. Android开发之Source无法覆写public void onClick(View v)

    初学Android开发,在为一个按钮[该按钮继承OnClickListener()]写监听时,发现无法在Source中引入public void onClick(View v),当时非常纳闷,平常情况 ...

  5. 西门子MES解决方案SIMATIC IT在乳制品行业小试牛刀

    竞争的白热化,紧缩的产品利润,食品安全保障,越来越苛刻的法规要求和全球化的市场与品牌维持的重要性对乳品行业的企业提出了更高的要求,实施 MES将是企业唯一的出路. 自从“十一五”制造业信息化为MES正 ...

  6. ios中怎么样点击背景退出键盘

    //退出键盘 只需一句,药到病除 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event{ [self.view endEdi ...

  7. 5.Knockout.Js(自定义绑定)

    前言 你可以创建自己的自定义绑定 – 没有必要非要使用内嵌的绑定(像click,value等).你可以你封装复杂的逻辑或行为,自定义很容易使用和重用的绑定.例如,你可以在form表单里自定义像grid ...

  8. C#之玩转反射【转:http://www.cnblogs.com/yaozhenfa/p/CSharp_Reflection_1.html】

    前言 之所以要写这篇关于C#反射的随笔,起因有两个:   第一个是自己开发的网站需要用到   其次就是没看到这方面比较好的文章. 所以下定决心自己写一篇,废话不多说开始进入正题. 前期准备 在VS20 ...

  9. iOS学习之Object-C语言集合

    一.数组类      1.C语言数组的特点:数组是一个有序的集合,用来存储相同数据类型的元素,通过下标访问数组中的元素,下标从0开始.      2.OC中的数组只能存储对象类型(必须是NSObjec ...

  10. iOS学习之C语言结构体

    结构体:用来存放相同类型数据或者不同类型数据的自定义类型. 结构体定义(声明) struct 结构体名 {    成员变量1;    成员变量2;    ... }; typedef 现有类型 新的类 ...