【bzoj1010】[HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 9281 Solved: 3719
[Submit][Status][Discuss]
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<ctime>
#include<cstdlib>
using namespace std;
long long n,l,c,a[],sum[],q[],f[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
double slop(int x,int y) //计算斜率
{return (f[x]-f[y]+sum[x]*sum[x]-sum[y]*sum[y])*1.0/(sum[x]-sum[y]);}
int main()
{
n=read(); l=read(); c=l+;
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++) sum[i]+=i;
int l=,r=;
for(int i=;i<=n;i++)
{
while(l<r&&slop(q[l],q[l+])<=*(sum[i]-c)) l++;
int t=q[l];
f[i]=f[t]+(sum[i]-sum[t]-c)*(sum[i]-sum[t]-c);
while(l<r&&slop(q[r],i)<slop(q[r-],q[r])) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
【bzoj1010】[HNOI2008]玩具装箱toy的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)
1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- [BZOJ1010][HNOI2008]玩具装箱toy 解题报告
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ1010 [HNOI2008]玩具装箱toy
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
- 题解【bzoj1010 [HNOI2008]玩具装箱TOY】
斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...
- 【斜率优化】BZOJ1010 [HNOI2008]玩具装箱toy
[题目大意] P教授有编号为1...N的N件玩具,第i件玩具长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.如果将第i件玩具到第j个玩具放到一 个容器中,那么容器的长度将为 x ...
随机推荐
- Tomcat配置虚拟主机后的登录验证码问题
先描述一下问题现象,在本地测试运行一个java web网站,一切正常.但把网站部署到Linux服务器上后,发现登录出了问题,提示验证码输入不正确.登录时需要输入验证码,而验证码的原值是先存入sessi ...
- 获取android SDCard存储大小
//File path = Environment.getDataDirectory();//手机内置空间 1.获取SD卡的路径 File path = Environment.getExternal ...
- [CentOS 7] 安装nginx第一步先搭建nginx服务器环境
简要地介绍一下,如何在CentOS 7中安装nginx服务器 方法/步骤 下载对应当前系统版本的nginx包(package) # wget http://nginx.org/packages/ ...
- 【原】SBT构建Scala应用
[转帖] 原文地址:https://github.com/CSUG/real_world_scala/blob/master/02_sbt.markdown 尊重版权,尊重他人劳动成果,转帖请注明原文 ...
- STM32F0xx_TIM输入捕获(计算频率)配置详细过程
前言 关于STM32的定时器,可谓是功能强大,估计没有多少人研究完STM32定时器的所有功能(包括我也没有),只是使用常用的一些功能,后续我会推出关于STM32定时器的更多功能. STM32芯片多数为 ...
- 第九章 管理类型(In .net4.5) 之 继承机制
1. 概述 本章包括 设计和实现接口.创建和使用基类 以及 使用.net类库提供的标准接口. 2. 主要内容 2.1 设计和实现接口 一个接口包含公共的方法.属性.事件.索引器.类和结构都可以实现接口 ...
- String类详解,StringBuffer
先说一下String类的equals()方法. 下面我们先看一段代码: 这段代码输出的结果为: ture true -------------- false 咋看之下貌似Object类比较特别,那么我 ...
- 算法系列5《SSF33》
SSF33算法是以128位分组为单位进行运算,密钥长度为16字节,该算法也可以被用于安全报文传送和MAC机制密文运算. 使用SSF33算法和基于3-DES的对称加密机制使用相同长度的密钥,能够同原有的 ...
- 解压vmlinuz和解压initrd(initramfs)
有时就算只得到一个Linux kernel的rpm包或者直接是编译后的vmlinuz和initrd的binary文件,也需要了解其中的一些细节,可能需要去查找这些binary有没有将我想要的patch ...
- UIImagePickerController之Block回调
方法使用:引入头文件 #import "UIImagePickerController+Block.h" 我这拖出来的两个属性 @property (weak, nonatomic ...