洛谷题目链接

动态规划

我们看题目后知道这是一棵无根树,要求出有多少子树

我们设$f[u][1]$表示选了当前节点$u$的方案数

相反的$f[u][0]$则为不选中$u$

那么考虑状态转移如下:

f[u][1]=(f[u][1]*(1+f[v][1]))%mod;
f[u][0]=(f[u][0]+(f[v][1]+f[v][0]%mod))%mod;

第二个就不解释了,第一个根据加法原则可以知道

代码实现:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define mod 1000000007
#define N 100007
#define int long long
using namespace std;
struct Edge
{
int to,nxt;
}edge[N<<1];
int head[N],f[N][2];
int n,cnt;
void Add(int x,int y)
{
edge[++cnt].to=y;
edge[cnt].nxt=head[x];
head[x]=cnt;
}
void Dfs(int u,int fa)
{
f[u][1]=1;
for(int i=head[u];i;i=edge[i].nxt)
{
int v=edge[i].to;
if(v==fa)
continue;
Dfs(v,u);
f[u][1]=(f[u][1]*(1+f[v][1]))%mod;
f[u][0]=(f[u][0]+(f[v][1]+f[v][0]%mod))%mod;
}
}
signed main()
{
scanf("%lld",&n);
for(int i=1;i<n;++i)
{
int x,y;
scanf("%lld%lld",&x,&y);
Add(x,y);
Add(y,x);
}
Dfs(1,0);
printf("%lld",(f[1][0]+f[1][1])%mod);
return 0;
}

  

洛谷P2796 Facer的程序的更多相关文章

  1. 洛谷 P2796 Facer的程序 题解

    题面 一个树形DP, f[i]=表示以i为根可以得到的子树个数: 则f[i]*=(f[j]+1): 初始化f[i]=1; ans=sigma(f[i]); #include <bits/stdc ...

  2. 洛谷P2707 Facer帮父亲 [优先队列,数学]

    题目传送门 Facer帮父亲 题目背景 Facer可是一个孝顺的孩纸呦 题目描述 Facer的父亲是一名经理,现在总是垂头丧气的. Facer问父亲,怎么啦?父亲说,公司出了点问题啊. 公司管理着N个 ...

  3. 洛谷 P2797 Facer的魔法 解题报告

    P2797 Facer的魔法 题意:给你n个数,你可以选若干个数,使得平均数减中位数最大 数据范围:\(n \le 10^5\) 原题CF626E 很容易想到枚举一个中位数,但是如果选取的数字的个数是 ...

  4. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  5. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  6. [洛谷OJ] P1114 “非常男女”计划

    洛谷1114 “非常男女”计划 本题地址:http://www.luogu.org/problem/show?pid=1114 题目描述 近来,初一年的XXX小朋友致力于研究班上同学的配对问题(别想太 ...

  7. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

  8. 洛谷P1017 进制转换

    洛谷P1017 进制转换 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 \(1*10 ...

  9. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

随机推荐

  1. 回炉重铸系列之javaEE基础

    这篇文章主要介绍 servlet filter listener interceptor 之 知识点.博文主要从 概念,生命周期,使命介绍其区别.详情如下:   概念 生命周期 使命 servlet ...

  2. 剑指offer18:操作给定的二叉树,将其变换为源二叉树的镜像。

    1 题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 2 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ ...

  3. Codeforces 1247C. p-binary

    传送门 首先 $n=\sum_{i=1}^{ans}(2^{x_{ans}}+p)$ 可以变成 $n-ans \cdot p=\sum_{i=1}^{ans}2^{x_{ans}}$ 注意到如果 $n ...

  4. Nopcommerce 使用Task时dbcontext关闭问题

    1.开启一个线程 Task.Run(() => { CreatPrintImage(preViewModel.DiyProductGuid); }); 2.线程代码 /// <summar ...

  5. windows 安装K8s 简易教程

    1. 先安装 chocolatey https://chocolatey.org/install administrator 运行 命令: @"%SystemRoot%\System32\W ...

  6. SpringBoot整合Redis---Jedis版

    目录 介绍 开发环境 pom文件引入 创建redis.properties配置文件 创建RedisConfig配置类 创建RedisUtil工具类 使用 效果 介绍 Redis简介 Redis 是完全 ...

  7. javaIO——PushbackReader

    1. 注释解释: A character-stream reader that allows characters to be pushed back into the stream. 一个允许字符被 ...

  8. Oracle学习笔记:ASCII码转换(chr和ascii函数)

    今天get到一个骚操作,通过ascii码转换之后来进行互换编码的. select chr(ascii('f') + ascii('m') - ascii('a')) from dual; 有必要对as ...

  9. XML模块与类的定义

    xml模块 xml介绍: --XML 全称  可扩展标记语言 --<tag></tag>  双标签   标签中间可以加入文本信息 --<tag/>单标签  没有文本 ...

  10. django form 和modelform样式设置

      目录 1.form通过attr设置属性 2.输入框设置表单状态 3.modelform的使用 4.结合modelform 使用for循环生成输入框 5.基于init构造方法设置样式 6.基本增删改 ...