CF768F Barrels and boxes
嘟嘟嘟
此题不难。
这种题做几道就知道些套路了:我们枚举酒有几堆,这样就能算出食物有多少堆以及他们的排列数,那么概率就是合法方案数 / 总方案数。
设酒有\(i\)堆,那么就有\(C_{w - 1} ^ {i - 1}\)种排列方法,对应的食物堆数就可能有\(i - 1, i, i + 1\)堆,然后同样用隔板法算出食物的排列方法,即\(C_{f - 1} ^ {i - 2}, C_{f - 1} ^ {i - 1}, C_{f - 1} ^ {i}\)。把这俩乘起来就是当酒堆数为\(i\)的总方案数。
至于合法方案数,就是我们先强制往每一堆酒上放\(h\)个,然后再往\(i\)堆酒上放\(w - h * i\)个,即\(C_{w - h * i - 1} ^ {i - 1}\)。
然后注意边界情况。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
const ll mod = 1e9 + 7;
In ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen(".in", "r", stdin);
freopen(".out", "w", stdout);
#endif
}
int n, m, h;
ll fac[maxn], inv[maxn];
In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
In ll C(int n, int m)
{
if(m < 0 || m > n) return 0;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
In void init()
{
fac[0] = inv[0] = 1;
for(int i = 1; i < maxn; ++i) fac[i] = fac[i - 1] * i % mod;
inv[maxn - 1] = quickpow(fac[maxn - 1], mod - 2);
for(int i = maxn - 2; i; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
}
int main()
{
//MYFILE();
m = read(), n = read(), h = read();
if(!m) {puts(n > h ? "1" : "0"); return 0;}
if(!n) {puts("1"); return 0;}
init();
ll ans1 = 0, ans2 = 0;
for(int i = 1; i <= n; ++i)
{
ll tp1 = C(n - 1, i - 1);
ll tp2 = inc(C(m - 1, i - 2), inc(C(m - 1, i - 1) * 2, C(m - 1, i)));
if(1LL * n - 1LL * h * i >= i) ans2 = inc(ans2, C(n - h * i - 1, i - 1) * tp2 % mod);
ans1 = inc(ans1, tp1 * tp2 % mod);
}
write(ans2 * quickpow(ans1, mod - 2) % mod), enter;
return 0;
}
CF768F Barrels and boxes的更多相关文章
- 【codeforces 768F】 Barrels and boxes
http://codeforces.com/problemset/problem/768/F (题目链接) 题意 A,B两种物品可以装到栈中,每个栈只能存放一种物品,容量没有限制.现在讲所有栈排成一列 ...
- 【codeforces 768F】Barrels and boxes
[题目链接]:http://codeforces.com/problemset/problem/768/F [题意] 让你把f个food和w个wine装在若干个栈里面; 每个栈只能装food或者是wi ...
- Divide by Zero 2017 and Codeforces Round #399 (Div. 1 + Div. 2, combined)
C题卡了好久,A掉C题之后看到自己已经排在好后面说实话有点绝望,最后又过了两题,总算稳住了. AC:ABCDE Rank:191 Rating:2156+37->2193 A.Oath of t ...
- Fedora 24 Gnome Boxes 无法ping通网络
安装Fedora 24在试用虚拟机时发现无法ping通外网. 我傻傻地以为是软件问题. 问题描述: 尝试ping程序来测试网络连通性: (我之前也是ping百度,后来在为了少打字百度了一些比较短的域名 ...
- Problem B Boxes in a Line
省赛B题....手写链表..其实很简单的.... 比赛时太急了,各种手残....没搞出来....要不然就有金了...注:对相邻的元素需要特判..... Problem B Boxes in a Li ...
- Codeforces Round #229 (Div. 2) C. Inna and Candy Boxes 树状数组s
C. Inna and Candy Boxes Inna loves sweets very much. She has n closed present boxes lines up in a ...
- boxes
boxes [英][bɒksɪz][美][bɑ:ksɪz] n.盒( box的名词复数 ); 一盒; 电视; 小亭; v.把…装入盒[箱,匣]中( box的第三人称单数 ); 拳击; 以上结果来自 ...
- Brute Force - B. Candy Boxes ( Codeforces Round #278 (Div. 2)
B. Candy Boxes Problem's Link: http://codeforces.com/contest/488/problem/B Mean: T题目意思很简单,不解释. ana ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
随机推荐
- c++学习---迭代器
迭代器类型: begin和end的返回值的类型由对象是否为常量所决定 无论对象是都为常量,cbegin和cend都将都到一个const_iterator
- Nginx实现同一端口HTTP跳转HTTPS
小目标:在只监听一个端口的情况下,将http访问跳转为https. 一般情况下http协议使用80端口,https协议443端口.要实现http强制转https是非常简单的事,随便都可以找到很多方案. ...
- call、apply、bind一直是不求甚解!
一直感觉代码中有call和apply就很高大上(看不懂),但是都草草略过,今天非要弄明白!以前总是死记硬背:call.apply.bind 都是用来修改函数中的this,传参时,call是一个个传参, ...
- ipp 实现图像空间的转换
下载:https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c- ...
- js入门第一篇
简介:JavaScript 运行在客户端(浏览器)是一种客户端语言,javascript的引擎被称为JavaScript引擎,为浏览器的一部分广泛用于客户端的脚本语言 应用场景:网页特效, 服务端开发 ...
- B树Java代码实现以及测试
B树定义 B 树又叫平衡多路查找树.一棵m阶的B 树 (m叉树)的特性如下: 根节点至少有两个孩子 每个非根节点至少有M/2(上取整)个孩子,至多有M个孩子. 每个非根节点至少有M/2-1(上取整)个 ...
- el-table——可编辑拖拽转换csv格式的表格
<!--可拖拽的表格:表格内容+行参数+按钮名称(对话框标题)--> <template> <div> <el-button size="mini& ...
- Java知识导航总图
1.系统构架 企业服务总线(ESB).微服务.面向服务的架构(SOA) 了解分布式文件存储系统,掌握集群化开发及部署 2.系统系统集成技术 Wsbservice.Socket 3.RPC远程调用的相关 ...
- ES date_histogram 聚合
如下 GET cars/index/_search { "size":0, "aggs": { "sales": { "date_ ...
- 13 Windows编程——系统内置窗口子类型之静态子窗口
静态子窗口类型 wndclass:static 源码 #include<Windows.h> #include<Windowsx.h> HINSTANCE G_h; LRESU ...