基于模板匹配的目标跟踪(OpenCV)
基于VS2010+ OpenCV2。代码可以读入视频,也可以读摄像头,两者的选择只需要在代码中稍微修改即可。对于视频来说,运行会先显示第一帧,然后我们用鼠标框选要跟踪的目标,然后跟踪器开始跟踪每一帧。对摄像头来说,就会一直采集图像,然后我们用鼠标框选要跟踪的目标,接着跟踪器开始跟踪后面的每一帧。具体代码如下:
#include <opencv2/opencv.hpp> using namespace cv;
using namespace std; // Global variables
Rect box;
bool drawing_box = false;
bool gotBB = false; // bounding box mouse callback
void mouseHandler(int event, int x, int y, int flags, void *param){
switch( event ){
case CV_EVENT_MOUSEMOVE:
if (drawing_box){
box.width = x-box.x;
box.height = y-box.y;
}
break;
case CV_EVENT_LBUTTONDOWN:
drawing_box = true;
box = Rect( x, y, 0, 0 );
break;
case CV_EVENT_LBUTTONUP:
drawing_box = false;
if( box.width < 0 ){
box.x += box.width;
box.width *= -1;
}
if( box.height < 0 ){
box.y += box.height;
box.height *= -1;
}
gotBB = true;
break;
}
} // tracker: get search patches around the last tracking box,
// and find the most similar one
void tracking(Mat frame, Mat &model, Rect &trackBox)
{
Mat gray;
cvtColor(frame, gray, CV_RGB2GRAY); Rect searchWindow;
searchWindow.width = trackBox.width * 3;
searchWindow.height = trackBox.height * 3;
searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5;
searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5;
searchWindow &= Rect(0, 0, frame.cols, frame.rows); Mat similarity;
matchTemplate(gray(searchWindow), model, similarity, CV_TM_CCOEFF_NORMED); double mag_r;
Point point;
minMaxLoc(similarity, 0, &mag_r, 0, &point);
trackBox.x = point.x + searchWindow.x;
trackBox.y = point.y + searchWindow.y;
model = gray(trackBox);
} int main(int argc, char * argv[])
{
VideoCapture capture;
capture.open("david.mpg");
bool fromfile = true;
//Init camera
if (!capture.isOpened())
{
cout << "capture device failed to open!" << endl;
return -1;
}
//Register mouse callback to draw the bounding box
cvNamedWindow("Tracker", CV_WINDOW_AUTOSIZE);
cvSetMouseCallback("Tracker", mouseHandler, NULL ); Mat frame, model;
capture >> frame;
while(!gotBB)
{
if (!fromfile)
capture >> frame; imshow("Tracker", frame);
if (cvWaitKey(20) == 'q')
return 1;
}
//Remove callback
cvSetMouseCallback("Tracker", NULL, NULL ); Mat gray;
cvtColor(frame, gray, CV_RGB2GRAY);
model = gray(box); int frameCount = 0; while (1)
{
capture >> frame;
if (frame.empty())
return -1;
double t = (double)cvGetTickCount();
frameCount++; // tracking
tracking(frame, model, box); // show
stringstream buf;
buf << frameCount;
string num = buf.str();
putText(frame, num, Point(20, 20), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 3);
rectangle(frame, box, Scalar(0, 0, 255), 3);
imshow("Tracker", frame); t = (double)cvGetTickCount() - t;
cout << "cost time: " << t / ((double)cvGetTickFrequency()*1000.) << endl; if ( cvWaitKey(1) == 27 )
break;
} return 0;
}
基于模板匹配的目标跟踪(OpenCV)的更多相关文章
- 开源项目(9-0)综述--基于深度学习的目标跟踪sort与deep-sort
基于深度学习的目标跟踪sort与deep-sort https://github.com/Ewenwan/MVision/tree/master/3D_Object_Detection/Object_ ...
- opencv如何用模板匹配寻找目标
首先使用: MatchTemplate 比较模板和重叠的图像区域 void cvMatchTemplate( const CvArr* image, const CvArr* templ, CvArr ...
- 基于 MeanShift 算法的目标跟踪问题研究
参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html MeanShift 算法作为一种基于特征的跟踪方法,基本思想 ...
- 使用Opencv中matchTemplate模板匹配方法跟踪移动目标
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...
- 基于MeanShift的目标跟踪算法及实现
这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...
- OpenCV——模板匹配
minMaxLoc函数: void minMaxLoc( const Mat& src, double* minVal, double* maxVal=0, Point* minLoc=0, ...
- Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...
- 【目标跟踪】相关滤波算法之MOSSE
简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...
- 时序分析:DTW算法(基于模板)
对时序对象进行分析,使用KMP算法可以分析速率不变的模式,参考时序分析:欧式空间轨迹模式识别.使用基于模板匹配的方法,对于速率发生变化的模式,需要用新的对速率要求松散的方法,DTW方法为一种广泛使用的 ...
随机推荐
- Codeforces Round #346 (Div. 2) A题 [一道让我生气的思维题·]
A. Round House Vasya lives in a round building, whose entrances are numbered sequentially by integer ...
- one(type,[data],fn) 为每一个匹配元素的特定事件(像click)绑定一个一次性的事件处理函数。
one(type,[data],fn) 概述 为每一个匹配元素的特定事件(像click)绑定一个一次性的事件处理函数. 在每个对象上,这个事件处理函数只会被执行一次.其他规则与bind()函数相同.这 ...
- Unknown property 'mybatis-plus' yml文件报错
就是因为没有对应的依赖 package com.taotao.config; import org.mybatis.spring.annotation.MapperScan; import org.s ...
- learning armbian steps(9) ----- armbian 源码分析(四)
在上一节的分析当中,我们知道是通过对话框来选择到底编译的是哪块板子,基于什么样的配置. 接下来我们来拿一个实例来分析一下具体的案例,我们会选中如下所示的版本 iotx-3 AM335X 1Gb SoC ...
- 科大讯飞语音转文字,ffmpeg将wav转成pcm二进制音频文件
百度和讯飞和其他厂都提供了语音识别的接口,这里使用讯飞的识别将本地手机录的音频文件转成文字 以下注意事项: 1.X_Param 参数开始的时候带了空格导致验证不过,原因是讯飞将字符串做了repelce ...
- MIME协议(四) -- MIME消息的头字段
MIME消息的头字段 4.1 Content-Type 对于表示某个具体资源的MIME消息,它的消息头中需要指定资源的数据类型:对于MIME组合消息,它的消息头中需要指定组合关系.具体资源的数据类型 ...
- appium中从activity切换到html
问题:混合开发的app中,会有内嵌的H5页面元素,该如何进行定位操作? 解决思路:appium中的元素定位都是基于android原生控件进行元素定位,而web网页是B/S架构,两者运行环境不同需要进行 ...
- LeetCode 41. 缺失的第一个正数(First Missing Positive)
题目描述 给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8 ...
- Ubuntu配置ISCSI
target端: 1.安装 iscsi target相关的软件 $ sudo apt-get install iscsitarget iscsitarget-source iscsitarget- ...
- shell远程操作另外一台机器上数据
shell远程操作另外一台机器上的数据,有两种方式: 1 .配置免密登陆,2.使用sshpass 当前存在两台虚拟机,ip地址分别为:192.168.3.32 192.168.3.33 一.免密登陆操 ...