洛谷P4145——上帝造题的七分钟2 / 花神游历各国
题目背景
XLk觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。
题目描述
"第一分钟,X说,要有数列,于是便给定了一个正整数数列。
第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作。
第三分钟,k说,要能查询,于是便有了求一段数的和的操作。
第四分钟,彩虹喵说,要是noip难度,于是便有了数据范围。
第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。
第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过64位有符号整数类型的表示范围的限制。
第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。"
——《上帝造题的七分钟·第二部》
所以这个神圣的任务就交给你了。
输入格式
第一行一个整数n,代表数列中数的个数。
第二行n个正整数,表示初始状态下数列中的数。
第三行一个整数m,表示有m次操作。
接下来mm行每行三个整数k,l,r
,
k=0
表示给[l,r]中的每个数开平方(下取整)k=1
表示询问[l,r]中各个数的和。
数据中有可能l>rl>r,所以遇到这种情况请交换l和r。
输出格式
对于询问操作,每行输出一个回答。
输入输出样例
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8
19
7
6
说明/提示
对于30%的数据,1$\le$ n,m $\le$ 1000,数列中的数不超过32767。
对于100%的数据,1$\le$ n,m $\le$ 100000,1$\le$ l,r$\le$ n,数列中的数大于0,且不超过1012。
注意l有可能大于r,遇到这种情况请交换l,r。
出现了第五种运算——开方,看来咱们的lazy标志不能用了qwq
但既然出在这肯定存在某种特殊的性质,可以是本身数的变化上,也可以是储存数据的变化上。
我们注意到开方是个好大好大的减小数的一种运算,而我们惊奇地发现1012只要做6次的开方就变成1了,所以就算是暴力全部开方,也最多只用操作六次,剩下的区间求和就是线段树拿手的啦。
我们储存一下区间的最大值来判断其是否大于1就可以去判断是否需要进行开方操作了。
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <cmath>
#include <ctime>
#include <queue>
#define MIN(a,b) (a)<(b)?(a):(b)
#define MAX(a,b) (a)>(b)?(a):(b)
#define ABS(a) (a)>0?(a):-(a)
#define debug(a) printf("a=%d\n",a);
#define fo(i,a,b) for (int i=(a);i<=(b);++i)
#define fod(i,a,b) for (int i=(a);i>=(b);--i)
#define re(i,a,b) for (int i=(a);i<(b);++i)
#define red(i,a,b) for (int i=(a);i>(b);--i)
#define M 100050
#define N 400400
typedef long long LL;
using namespace std;
LL a[M];
struct Segment_Tree{
LL maxx[N];
LL sum[N];
void build(LL root,LL l,LL r){
if (l==r){
maxx[root]=sum[root]=a[l];
return;
}
LL mid=(l+r)>>;
build(root<<,l,mid);
build(root<<|,mid+,r);
maxx[root]=MAX(maxx[root<<],maxx[root<<|]);
sum[root]=sum[root<<]+sum[root<<|];
}
LL get_sum(LL root,LL l,LL r,LL lef,LL righ){
if (lef<=l&&righ>=r) return sum[root];
LL mid=(l+r)>>;
LL qwq=;
if (lef<=mid) qwq+=get_sum(root<<,l,mid,lef,righ);
if (righ>mid) qwq+=get_sum(root<<|,mid+,r,lef,righ);
return qwq;
}
void updata(LL root,LL l,LL r,LL lef,LL righ){
if (l==r){
sum[root]=maxx[root]=sqrt(maxx[root]);
return;
}
if (maxx[root]<=) return;
LL mid=(l+r)>>;
if (lef<=mid) updata(root<<,l,mid,lef,righ);
if (righ>mid) updata(root<<|,mid+,r,lef,righ);
maxx[root]=MAX(maxx[root<<],maxx[root<<|]);
sum[root]=sum[root<<]+sum[root<<|];
}
}seg;
int n,k,l,m,r;
void readint(int &x){
x=;
char c;
int w=;
for (c=getchar();c<''||c>'';c=getchar())
if (c=='-') w=-;
for (;c>=''&&c<='';c=getchar())
x=(x<<)+(x<<)+c-'';
x*=w;
}
void readlong(long long &x){
x=;
char c;
long long w=;
for (c=getchar();c<''||c>'';c=getchar())
if (c=='-') w=-;
for (;c>=''&&c<='';c=getchar())
x=(x<<)+(x<<)+c-'';
x*=w;
}
int main(){
readint(n);
fo(i,,n) readlong(a[i]);
seg.build(,,n);
readint(m);
fo(i,,m){
readint(k);
readint(l);
readint(r);
if (l>r) swap(l,r);
if (k==) seg.updata(,,n,l,r);
else printf("%lld\n",seg.get_sum(,,n,l,r));
}
return ;
}
神奇的代码
洛谷P4145——上帝造题的七分钟2 / 花神游历各国的更多相关文章
- 洛谷P4145 上帝造题的七分钟2/花神游历各国 [树状数组,并查集]
题目传送门 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是 ...
- 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国
洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...
- 【题解】 Luogu P4145 上帝造题的七分钟2 / 花神游历各国
原题传送门 这道题实际和GSS4是一样的,只是输入方式有点区别 GSS4传送门 这道题暴力就能过qaq(这里暴力指线段树) 数据比较水 开方修改在线段树中枚举叶节点sqrt 查询区间和线段树基本操作 ...
- P4145 上帝造题的七分钟2 / 花神游历各国(线段树区间开平方)
有点意思,不需要什么懒标记之类的东西,因为一个数无论怎样开平方,最后取整的结果必然会是1,所以我们不妨用最大值来维护,若区间最大值不为1,就暴力修改,否则不用管. #include<bits/s ...
- P4145 上帝造题的七分钟2 / 花神游历各国
思路 每个数不会被开方超过log次,对每个数暴力开方即可 代码 #include <algorithm> #include <cstring> #include <cst ...
- luogu P4145 上帝造题的七分钟2 / 花神游历各国 维护区间和&&区间开根号
因为开根号能使数字减小得非常快 所以开不了几次(6次?)很大的数就会变成1..... 所以我们可以维护区间最大值,若最大值>1,则继续递归子树,暴力修改叶节点,否则直接return (好像也可以 ...
- day1 晚上 P4145 上帝造题的七分钟2 / 花神游历各国 线段树
#include<iostream> #include<cstdio> #include<cmath> using namespace std; ; struct ...
- [Luogu P4145] 上帝造题的七分钟2 / 花神游历各国
题目链接 题目简要:我们需要一个能支持区间内每一个数开方以及区间求和的数据结构. 解题思路:说道区间修改区间查询,第一个想到的当然就是分块线段树.数据范围要用long long.本来我是看到区间这两个 ...
随机推荐
- Java 线程之间的通讯,等待唤醒机制
public class ThreadNotifySample { public static void main(String[] args) { // Res res = new Res(); / ...
- 如何画好ER图
快速阅读 了解ER图的基本组成,以及如何在viso中画ER图. 什么是ER图 是实体关系图,用矩形表示实体,用椭圆形表示属性,用棱形表示两实体之间的联系.相互用直接联接起来,是一种数据建模工具.用来描 ...
- SQL查询语句可以执行,但是提示对象名无效
类似于缓存的问题,ctrl+shift+R 刷新下 一般就好了
- expdp导出卡住问题诊断
本文链接:https://blog.csdn.net/guogang83/article/details/78800487 [oracle@database ~]$nohup expdp gg/gg ...
- [设计原则与模式] 如何理解TDD的三条规则
cp from : https://blog.csdn.net/ibelieve1974/article/details/54948031 如何理解Bob大叔的TDD三条规则?第一条和第三条讲的是 ...
- DNS 预读取功能 链接预取
https://developer.mozilla.org/zh-CN/docs/Controlling_DNS_prefetching DNS 请求需要的带宽非常小,但是延迟却有点高,这一点在手机网 ...
- Variance Inflation Factor (VIF) 方差膨胀因子解释_附python脚本
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- ECMAScript 6.0基础入门教程
ECMAScript 6.0基础入门教程 转:https://blog.csdn.net/hexinyu_1022/article/details/80778727 https://blog.csdn ...
- 【转载】 tf.split函数的用法
原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题 用法略有修改 ----- ...
- Java程序员金三银四精心准备的面试题及答案(基础篇)
1.面向对象的特征有哪些方面? [基础] 答:面向对象的特征主要有以下几个方面: 1)抽象:抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问 ...