题目描述:

H. Maximal GCD
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given positive integer number n. You should create such strictly increasing sequence of k positive numbers a1, a2, ..., ak, that their sum is equal to n and greatest common divisor is maximal.

Greatest common divisor of sequence is maximum of such numbers that every element of sequence is divisible by them.

If there is no possible sequence then output -1.

Input

The first line consists of two numbers n and k (1 ≤ n, k ≤ 1010).

Output

If the answer exists then output k numbers — resulting sequence. Otherwise output -1. If there are multiple answers, print any of them.

Examples
Input

Copy
6 3
Output

Copy
1 2 3
Input

Copy
8 2
Output

Copy
2 6
Input

Copy
5 3
Output

Copy
-1

思路:

这个题是要给一个数n,一个数k,看能不能凑出一组含k个元素的严格递增数列,这组数的和为n,还要让这组数的最大公约数最大。

刚开始,a1+a2+...+ak=n>=a1+(a1+1)+(a1+2)+...+(ak+k-1),解得1<=a1<=(n-k*(k-1)/2)/k,既然要求公约数最大,把a的所有因数找出来,从大往小一个个试,

比如,找到一个f是a1的因数,既然要f为这组数的gcd,那f一定也是n的因数,检查一下,不是就跳过,是就n/f,变成找一个严格递增数列和为n/f,就不用考虑公因数了。

刚开始把过多的注意力放到了a1上,就把所有a1可能值一个个遍历,分别找因数,分别检查,结果是错的,而且程序逻辑及其混乱+复杂,还有好多要特判的地方(疯了我已经快)因为每一个a1都有因数1,最后对于较大的a1来说(从大往小检查)总会到1就停止,以为算出了最终结果。

所以后来把所有a的所有因数放到一个set里,也方便找最大值,从大往小遍历所有因数。就好了。。。吗?

结果超时。

仔细想想,怎么办。既然最后都是a1的因数f如果满足题目条件,那么它也是n的因数,那就把n的因数找出来就好了啊。

(٩(๑>◡<๑)۶),注意的是在枚举n的因数是不要忘了f要满足a1的上下界的限制,满足的才加到set中去。

但是但是,还要注意,一开始判断可不可能构造出这么一个数列,a1+a2+...+ak=n>=ka1+k*(k-1)/2>=k+k*(k-1)/2,以为完了?nonono,要注意题目数据范围,如果来个4*10^9这种,long long也存不下啊,那咋办,用double来存k吧...

Type

Size

数值范围

无值型void

0 byte

无值域

布尔型bool

1 byte

true   false

有符号短整型short [int] /signed short [int]

2 byte

-32768~32767

无符号短整型unsigned short [int]

2 byte

0~65535

有符号整型int /signed [int]

4 byte

-2147483648~2147483647

无符号整型unsigned [int]

4 byte

0~4294967295

有符号长整型long [int]/signed long [int]

4 byte

-2147483648~2147483647

无符号长整型unsigned long [int]

4 byte

0~4294967295

long long

8 byte

0~18446744073709552000

有符号字符型char/signed char

1 byte

-128~127

无符号字符型unsigned char

1 byte

0~255

宽字符型wchar_t (unsigned short.)

2 byte

0~65535

单精度浮点型float

4 byte

-3.4E-38~3.4E+38

双精度浮点型double

8 byte

1.7E-308~1.7E+308

long double

8 byte

(上表来源见下面博客)

知识点:贪心,数论(一点点)

代码:

 #include <iostream>
#include <cmath>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
long long n;
double k;
set<long long> fac;
vector<long long> num;
int main()
{
cin >> n >> k;
if(k+k*(k-)/<=n)
{
long long uper1 = (n-k*(k-)/)/k;
long long lower1 = ;
//cout << uper1 << " " << lower1 << endl;
long long qz = ;
/*for(long long a = uper1; a>=lower1; a--)
{
for(long long i = 1; i<sqrt(a)+1; i++)
{
if(a%i==0)
{
fac.insert(i);
fac.insert(a/i);
}
}
}*/
for(long long i = ;i<sqrt(n)+;i++)
{
if(n%i==)
{
if(i<=uper1)
{
fac.insert(i);
}
if(n/i<=uper1)
{
fac.insert(n/i);
}
}
}
/*cout << "fac " << endl;
for(auto ite = fac.rbegin();ite!=fac.rend();ite++)
{
cout << *ite << " ";
}
cout << endl;*/
for(auto ite = fac.rbegin(); ite!=fac.rend(); ite++)
{
//cout << "ite " << *ite << endl;
int flag = ;
num.clear();
long long sum = n/(*ite)-;
int shu = ;
num.push_back(shu);
if(sum)
{
shu++;
while(shu<=sum&&num.size()<k-)
{
num.push_back(shu);
sum -= shu;
shu++; }
if(shu<=sum)
{
qz = *ite;
//cout << "qz " << qz << endl;
num.push_back(sum);
break;
}
}
else
{
qz = *ite;
break;
}
}
for(int i = ;i<num.size();i++)
{
cout << qz*num[i] << " ";
}
cout << endl;
}
else
{
cout << - << endl;
}
return ;
}

参考资料:

年少轻狂12138,C++基本数据类型大小及表示范围,https://blog.csdn.net/weixin_40709898/article/details/79368310(间接引用,因为上面的博客也是转载但找不到原博客)

Codeforces H. Maximal GCD(贪心)的更多相关文章

  1. CodeForce-803C Maximal GCD(贪心数学)

    Maximal GCD CodeForces - 803C 现在给定一个正整数 n.你需要找到 k 个严格递增的正整数 a1, a2, ..., ak,满足他们的和等于 n 并且他们的最大公因数尽量大 ...

  2. codeforces 803C Maximal GCD(GCD数学)

    Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...

  3. Codeforces 803C. Maximal GCD 二分

    C. Maximal GCD time limit per test: 1 second memory limit per test: 256 megabytes input: standard in ...

  4. 【数学】codeforces C. Maximal GCD

    http://codeforces.com/contest/803/problem/C [题意] 给定两个数n,k(1 ≤ n, k ≤ 10^10) 要你输出k个数,满足以下条件: ①这k个数之和等 ...

  5. CodeForces - 803C Maximal GCD 【构造】

    You are given positive integer number n. You should create such strictly increasing sequence of k po ...

  6. Codeforces 803C. Maximal GCD

    题目链接:http://codeforces.com/contest/803/problem/C 中了若干trick之后才过... k个数的严格递增序列最小权值和就是${n*(n+1)/2}$,枚举这 ...

  7. Maximal GCD CodeForces - 803C (数论+思维优化)

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  8. AC日记——Maximal GCD codeforces 803c

    803C - Maximal GCD 思路: 最大的公约数是n的因数: 然后看范围k<=10^10; 单是答案都会超时: 但是,仔细读题会发现,n必须不小于k*(k+1)/2: 所以,当k不小于 ...

  9. Educational Codeforces Round 20 C. Maximal GCD

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

随机推荐

  1. zabbix详解

    官网地址 https://www.zabbix.com/documentation/3.0/manual/config/items/itemtypes/zabbix_agent 使用率

  2. win10查看激活到期时间

    我们知道Windows系统需要激活后才可以使用全部功能,那么你的Windows10激活了吗?如何查看激活时间呢?是不是永久激活的?带着这些问题,下面我们就一个一个逐一查看一下吧. 工具/原料   Wi ...

  3. 高级UI-高级渲染

    在使用了Panit画笔之后,可以对其进行渲染,从而达到更加人性化的方式 渲染分类 按常用渲染方式可以分为以下几种: BimapShader位图的图像渲染器 LinearGradient线性渲染 Rad ...

  4. .Net - 线程本地变量(存储)的使用

    关于C#多线程的文章,大部分都在讨论线程的开始与停止或者是多线程同步问题.多线程同步就是在不同线程中访问同一个变量或共享资源,众所周知在不使用线程同步的机制下,由于竞争的存在会使某些线程产生脏读或者是 ...

  5. python实践项目十:zipfile模块-将一个文件夹备份到一个 ZIP 文件

    描述:将指定路径下的某文件夹备份到一个zip文件 代码: #!/usr/bin/python # -*- coding: UTF-8 -*- # backupToZip - Copies an ent ...

  6. win10无法安装软件解决

    https://www.windowscentral.com/how-fix-network-resource-unavailable-install-error-windows-10

  7. Java开发笔记(一百一十三)HttpClient实现下载与上传

    前面介绍了通过HttpClient实现HTTP接口的GET方式调用和POST方式调用,那么文件下载与文件上传又该如何操作呢?其实在HttpClient看来,文件下载属于特殊的GET调用,只不过应答报文 ...

  8. Python使用RMF聚类分析客户价值

    投资机构或电商企业等积累的客户交易数据繁杂.需要根据用户的以往消费记录分析出不同用户群体的特征与价值,再针对不同群体提供不同的营销策略. 用户分析指标 根据美国数据库营销研究所Arthur Hughe ...

  9. win7系统的CMD窗口切换目录--小计

    经常使用win7系统的CMD窗口,需要切换到工作目录,方法如下: 1. Win + R 2. 在命令行输入 cmd 出现如下: C:\Users\admin> 3. 在以上输入 D: (表示切换 ...

  10. C#中的Process类使用

    有时候,用户在进行某个操作时,程序运行到某个阶段突然崩溃,我们需要让程序自动重启,重新执行用户之前的操作,当发现主程序还存在,就重启用户执行的附加程序.这时候Process就派上了用场. 控制台测试用 ...