如何简单使用tensorboard展示(二)
我使用tensorboard继续做了标量展示与直方图展示,在一的基础做了拓展,其改写代码如下:
import numpy as np
import tensorflow as tf
import random # x_img = np.array(np.ones((5,784)))
y_lable = np.array(np.zeros((5,10)))
for i in range(5):
y_lable[i,2+i]=1 with tf.name_scope('input'):
x = tf.placeholder(shape=[None,784],dtype=tf.float32,name='xinput')
y_ = tf.placeholder( shape=[None,10],dtype=tf.float32,name='yinput')
with tf.name_scope('weight'):
W = tf.Variable(tf.zeros([784,10]),dtype=tf.float32)
tf.summary.histogram('w',W)
b = tf.Variable(tf.zeros([10]),tf.float32)
y = tf.nn.softmax(tf.matmul(x,W) + b)
with tf.name_scope('cross_ent'):
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #损失函数
tf.summary.scalar('cross_en',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #优化器 #定义测试的准确率 #ragmaax()0表示按列,1表示按行,输出该列或行的最大值的下标值;equal()表示相等返回值为True或False
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) #执行测试样本的准确率(全部的样本),计算相等值,为bool值,则为1和0
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #将全部的bool型转换为float32类型,在求平均值
tf.summary.scalar('accuracy',accuracy) merged=tf.summary.merge_all() # 该步骤很关键
sess=tf.Session()
writer=tf.summary.FileWriter('C:\\Users\\51102\\Desktop\\savetensorboard',sess.graph) # 此步骤较为关键,特别是放置位置
sess.run(tf.global_variables_initializer()) for k in range(20): # 迭代20次
xx = np.zeros((5, 784)) # 下面是自己编造输入数据
for i in range(5):
for j in range(784):
xx[i, j] = random.randint(0, 254)
x_img=xx
su,ac=sess.run([merged,accuracy],feed_dict={x:x_img,y_:y_lable}) # 主要用了merged
writer.add_summary(su, k) # 此步骤将其写入文件中
结果显示如下图:


如何简单使用tensorboard展示(二)的更多相关文章
- 如何简单使用tensorboard展示(一)
我使用tensorboard中的graph做了展示,至于其它功能可以类推,其代码如下: import numpy as npimport tensorflow as tf x_img = np.arr ...
- iOS开发UI篇—使用嵌套模型完成的一个简单汽车图标展示程序
iOS开发UI篇—使用嵌套模型完成的一个简单汽车图标展示程序 一.plist文件和项目结构图 说明:这是一个嵌套模型的示例 二.代码示例: YYcarsgroup.h文件代码: // // YYcar ...
- 【ASP.NET基础】简单企业产品展示网站--产品编辑CRUD
摘要:本文记录创建一个小的.简单的产品网站的步骤. 一,搭建一个简单的产品展示网站,熟悉以下知识点:NVelocity模板引擎.Ajax无刷新页面请求,文件上传,Row_Number实现分页,ckEd ...
- [原创]linux简单之美(二)
原文链接:linux简单之美(二) 我们在前一章中看到了如何仅仅用syscall做一些简单的事,现在我们看能不能直接调用C标准库中的函数快速做一些"复杂"的事: section . ...
- jenkins-APP打包页面展示二维码
背景: 客户要求在APP打包页面展示二维码.虽然感觉这个功能很鸡肋,但是还是加上吧. 效果展示: 配置: 在上图中,106对应的内容是BuildName,我们可以通过build-name-setter ...
- keras实现简单性别识别(二分类问题)
keras实现简单性别识别(二分类问题) 第一步:准备好需要的库 tensorflow 1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras 2.0.8 opencv-p ...
- tensorflow学习之(七)使用tensorboard 展示神经网络的graph/histogram/scalar
# 创建神经网络, 使用tensorboard 展示graph/histogram/scalar import tensorflow as tf import numpy as np import m ...
- Python 简单入门指北(二)
Python 简单入门指北(二) 2 函数 2.1 函数是一等公民 一等公民指的是 Python 的函数能够动态创建,能赋值给别的变量,能作为参传给函数,也能作为函数的返回值.总而言之,函数和普通变量 ...
- tensorflow学习之(六)使用tensorboard展示神经网络的graph
# 创建神经网络, 使用tensorboard 展示graph import tensorflow as tf import numpy as np import matplotlib.pyplot ...
随机推荐
- Shel脚本-初步入门之《03》
Shel脚本-初步入门-Shell 脚本在 Linux 运维工作中的地位 3.Shell 脚本在 Linux 运维工作中的地位 Shell 脚本语言很适合用于处理纯文本类型的数据,而 Linux 系统 ...
- P4677 山区建小学|区间dp
P4677 山区建小学 题目描述 政府在某山区修建了一条道路,恰好穿越总共nn个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di 为了提高山区 ...
- 第15节_BLE协议GATT层
学习资料:官方手册 Vol 3: Core System Package [Host volume] Part G: Generic Attribute Profile (GATT) 这篇文章格式比较 ...
- python 爬虫之-- 正则表达式
正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. 正则表达式非python独有,python 提供了正则表达式的接口,re模块 一.正则匹配字符简介 模式 描述 \d ...
- zzL1和L2正则化regularization
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...
- n8n 试用
前边有简单的介绍n8n,如果大家看了官方网站会有一个比较醒目的说明zapier以及tray.io的开源替代方案 以下是一个简单的试用 环境准备 docker-compose 文件 version: ...
- [LeetCode] 913. Cat and Mouse 猫和老鼠
A game on an undirected graph is played by two players, Mouse and Cat, who alternate turns. The grap ...
- uniApp配置文件几个注意点
虽然有文档,但是偶尔还是会又找不到的,写下来遇到过的问题,随时补充.好记性不如烂笔头. 1.打包完安装之后,app 有时候会弹出一个提示框.如下: 修改配置项,设置 ignoreVersion 为 t ...
- 第01组 Beta冲刺(5/5)
队名:007 组长博客: https://www.cnblogs.com/Linrrui/p/12031875.html 作业博客: https://edu.cnblogs.com/campus/fz ...
- 不同种类的ICP算法
摘自<三维点云数据拼接中ICP及其改进算法综述>