题目链接

LOJ:https://loj.ac/problem/2290

洛谷:https://www.luogu.org/problemnew/show/P4547

Solution

首先考虑只有第一类边的情况,那么每种完美匹配一定会由\(n\)个边组组成,概率就是\(1/2^n\),对答案贡献为\(1\),那么问题就转化成了统计完美匹配个数。

设\(f[s1][s2]\)表示当前左边情况为\(s1\),右边为\(s2\),在把其他的点填满可以得到的完美匹配的种类数,然后就是普及组\(dp\),复杂度\(O(2^{2n})\),但是这样会重复计数,而且复杂度不对。

如果我们把\(s1\)严格每次都从高位到低位转移,然后上记忆化搜索,复杂度可以降到\(O(2^n\cdot n^2)\),且不会重复计数。

考虑其他两类边,我们硬点这些边都是单独的,概率\(50\%\),但是这样会算不对,第二类边组在两条边都选的时候贡献的概率为\(25\%\),但是应该是\(50\%\),所以我们多加一个\(25\%\)的边组就好了,同理第三类边组添加一个概率为\(-25\%\)的边组,然后改一改上面的\(dp\),记搜转移就好了,\(f\)开不下可以用\(\rm map\)。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long #define pii pair<int,int >
#define vec vector<int > #define pb push_back
#define mp make_pair
#define fr first
#define sc second #define FOR(i,l,r) for(int i=l,i##_r=r;i<=i##_r;i++) const int maxn = 1e4+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7;
const int inv2 = 5e8+4;
const int inv4 = 2.5e8+2; int add(int x,int y) {return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y) {return x-y<0?x-y+mod:x-y;}
int mul(int x,int y) {return 1ll*x*y-1ll*x*y/mod*mod;} map<int,int > f; int a[maxn],b[maxn],cnt,n,m; int dfs(int s) {
if(s==(1<<(n<<1))-1) return 1;
if(f.find(s)!=f.end()) return f[s];int now=0,ans=0;
for(int i=n-1;~i;i--) if(!(s&(1<<i))) {now=1<<i;break;}
for(int i=1;i<=cnt;i++)
if(!(a[i]&s)&&(now&a[i])) ans=add(ans,mul(b[i],dfs(s|a[i])));
return f[s]=ans;
} int main() {
read(n),read(m);
for(int i=1,s,s2,t,x,y;i<=m;i++) {
read(t),read(x),read(y);x--,y--;
s=1<<x|(1<<(y+n));a[++cnt]=s,b[cnt]=inv2;
if(!t) continue;read(x),read(y);x--,y--;
s2=1<<x|(1<<(y+n));a[++cnt]=s2,b[cnt]=inv2;
if(s&s2) continue;
a[++cnt]=s|s2,b[cnt]=t==1?inv4:mod-inv4;
}write(mul(dfs(0),(int)pow(2,n)));
return 0;
}

[LOJ2290] [THUWC2017] 随机二分图的更多相关文章

  1. [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP

    分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...

  2. [THUWC2017]随机二分图

    题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...

  3. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  4. BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)

    下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...

  5. THUWC2017随机二分图

    题面链接 洛谷 sol 唯一的重点是拆边... 0的不管,只看1.2. 先无论如何把两条边的边权赋为\(0.5\)然后我们发现如果两个都选了. 对于第一种边,我们发现如果\(\frac{1}{2} * ...

  6. [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)

    https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...

  7. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  8. 题解 洛谷 P4547 【[THUWC2017]随机二分图】

    根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...

  9. 【THUWC2017】随机二分图(动态规划)

    [THUWC2017]随机二分图(动态规划) 题面 BZOJ 洛谷 题解 如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\) ...

随机推荐

  1. CF1221G Graph And Numbers(折半搜索+图论)

    答案=总数-无0-无1-无2+无01+无02+无12-无012 直接详细讲无0和无2 无0为 01和11,无2为01和00,显然二者方案数相同,以下考虑无0 考虑折半搜索,后半段搜索,二进制点权0的位 ...

  2. C++2.0新特性(六)——<Smart Pointer(智能指针)之shared_ptr>

    Smart Pointer(智能指针)指的是一类指针,并不是单一某一个指针,它能知道自己被引用的个数以至于在最后一个引用消失时销毁它指向的对象,本文主要介绍C++2.0提供的新东西 一.Smart P ...

  3. 刷题之给定一个整数数组 nums 和一个目标值 taget,请你在该数组中找出和为目标值的那 两个 整数

    今天下午,看了一会github,想刷个题呢,就翻出来了刷点题提高自己的实际中的解决问题的能力,在面试的过程中,我们发现,其实很多时候,面试官 给我们的题,其实也是有一定的随机性的,所以我们要多刷更多的 ...

  4. Kafka(四) —— KafkaProducer源码阅读

    一.doSend()方法 Kafka中的每一条消息都对应一个ProducerRecord对象. public class ProducerRecord<K, V> { private fi ...

  5. 关于jvm系统属性-Djava.awt.headless 模式

    1. 什么是 java.awt.headless? Headless模式是系统的一种配置模式.在系统可能缺少显示设备.键盘或鼠标这些外设的情况下可以使用该模式. 2. 何时使用和headless mo ...

  6. phpexcel中文手册(转)

    首先到phpexcel官网上下载最新的phpexcel类,下周解压缩一个classes文件夹,里面包含了PHPExcel.php和PHPExcel的文件夹,这个类文件和文件夹是我们需要的,把class ...

  7. 爬虫urllib2 的异常错误处理URLError和HTTPError

    urllib2 的异常错误处理 在我们用urlopen或opener.open方法发出一个请求时,如果urlopen或opener.open不能处理这个response,就产生错误. 这里主要说的是U ...

  8. js组件常用封装方法。。。。。【组件封装】 ★★★★★★

    公共弹窗js写法:mcake弹窗封装Dialog.js function Dialog(bg,els,opts) { this.$els = $(els); this.$Dialogbg = $(bg ...

  9. (转)python3:类方法,静态方法和实例方法以及应用场景

    原文:https://blog.csdn.net/qq_34979346/article/details/83212716 1.实例方法在编程里经常用的是实例方法,直接用实例去调用, 只要 方法里有s ...

  10. too many positional arguments错误

    在window下mongodb默认安装在c盘的Program Files文件下 这个文件名中间有个空格    就导致了接下来too many positional arguments错误的产生