link

题意一开始没TM读懂。。。

就是给定一个\(G\le10^{10},N\le10^9\),求\(G^{\sum_{d|n}{n\choose d}}\),对999911659取模

由于999911659是质数,所以上面的数可以对999911658取模

现在问题转化为求\(\sum_{d|n}{n\choose d}\)对999911658取模(然后加个快速幂就行了)

对999911658质因数分解,可得\(999911658=2*3*4679*35617\)

由于次数都是一次,所以对这些数进行卢卡斯定理,然后中国剩余定理合并即可

不错的一道题,综合了好几道数论题一起考

#include <cstdio>
#define int long long
using namespace std; int g, n, d[2333], tot;
int p, fac[40010], inv[40010]; int exgcd(int a, int b, int x, int y)
{
if (b == 0) { x = 1, y = 0; return x; }
long long res = exgcd(b, a % b, y, x);
y -= a / b * x; return res;
} struct fuck
{
int x, y;
fuck(int x = 0, int y = 0) : x(x), y(y) {}
}; int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; x = x * x % p, y >>= 1) if (y & 1) res = res * x % p;
return res;
} int c(int n, int m)
{
if (n < m || m < 0) return 0;
if (n < p && m < p) return fac[n] * inv[m] % p * inv[n - m] % p;
return c(n / p, m / p) * c(n % p, m % p) % p;
} int work()
{
int ans = 0;
fac[0] = 1;
for (int i = 1; i < p; i++) fac[i] = fac[i - 1] * i % p;
inv[p - 1] = qpow(fac[p - 1], p - 2);
for (int i = p - 1; i >= 1; i--) inv[i - 1] = inv[i] * i % p;
for (int i = 1; i <= tot; i++)
ans = (ans + c(n, d[i])) % p;
return ans;
} signed main()
{
scanf("%lld%lld", &n, &g);
if (g % 999911659 == 0)
{
printf("0\n");
return 0;
}
for (int i = 1; i * i <= n; i++)
if (n % i == 0)
{
d[++tot] = i;
if (i * i != n) d[++tot] = n / i;
}
long long ans1, ans2, ans3, ans4;
p = 2, ans1 = work();
p = 3, ans2 = work();
p = 4679, ans3 = work();
p = 35617, ans4 = work();
p = 999911659;
printf("%lld\n", qpow(g, (499955829 * ans1 + 333303886 * ans2 + 289138806 * ans3 + 877424796 * ans4) % (p - 1)));
return 0;
}

一开始全WA了一发,#define int long long后95pts,第13个点read1expect 0

后来观察讨论发现是需要判断g和999911659不互质并且指数和p-1不互质的情况了(就是g是999911659倍数情况)

或者就是说\((kp)^{z(p-1)}\)被模成了0^0,然后快速幂返回了1

luogu2480 [SDOI2010]古代猪文的更多相关文章

  1. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  2. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  3. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  4. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  5. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  6. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  7. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  8. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. Samba服务学习报错总结

    1 2 3 4 5 此文献来至百度文库 http://wenku.baidu.com/link?url=hkHembjXcjoYRU9ky34a46Lzv5SAEutwa0v1_F8INQsdg_KK ...

  2. H264中的SPS、PPS提取与作用<转>

    牛逼的视频会议网站:http://wmnmtm.blog.163.com/blog/#m=0 ++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  3. eclipse 中文版 变成 英文版 方法

    找到目录运行命令 “eclipse.exe -nl en”

  4. dubbo-admin打包和zookper安装

    1 首选安装Zookper,下载zookeeper-3.5.3-beta版本,在这里我主要演示这个:下载地址:http://mirrors.hust.edu.cn/apache/zookeeper/ ...

  5. shell直接退出后 后台进程关闭的原因和对处

    在linux上进行测试时发现启动后台进程后,如果使用exit退出登录shell,shell退出后后台进程还是能够正常运行,但如果直接关闭登陆的窗口(如直接关掉xshell),那后台进程就会一起终了.都 ...

  6. C++输出斐波那契数列的几种方法

    定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那 ...

  7. google浏览器:Ignored call to 'confirm()'. The document is sandboxed, and the 'allow-modals' keyword is not set

    最近做一个功能,测试环境测试没问题,google浏览器测试也没问题,结果上生产发现google浏览器竟然用不了.查看控制台发现控制台报错: Ignored call to 'confirm()'. T ...

  8. OpenGL编程

    一.简介 OpenGL™ 是行业领域中最为广泛接纳的 2D/3D 图形 API, 其自诞生至今已催生了各种计算机平台及设备上的数千优秀应用程序.OpenGL™ 是独立于视窗操作系统或其它操作系统的,亦 ...

  9. EZOJ #82

    传送门 分析 首先我们发现$k$位数实际就是一位的情况的$k$次方 考虑一开始的总方案数是$2^{nm}$ 我们每一次枚举其中有$i$行$j$列 对于这种情况的容斥系数为$(-1)^{i+j}$ 方案 ...

  10. 85D Sum of Medians

    传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...