\(\color{#0066ff}{ 题目描述 }\)

为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?

判断两棵树是否同构的伪代码如下:

\(\color{#0066ff}{输入格式}\)

输入一个正整数n,表示有根树的结点数

\(\color{#0066ff}{输出格式}\)

输出这棵树期望的叶子节点数,要求误差小于1e-9

\(\color{#0066ff}{输入样例}\)

1

3

\(\color{#0066ff}{输出样例}\)

1.000000000

1.200000000

\(\color{#0066ff}{数据范围与提示}\)

对于30%的数据,1 ≤ n ≤ 10

对于70%的数据,1 ≤ n ≤ 100

对于100%的数据,1 ≤ n ≤ \(10^9\)

\(\color{#0066ff}{ 题解 }\)

根据概率,显然\(ans=\frac{\sum二叉树叶子节点个数}{二叉树个数}\)

n个点的二叉树个数为\(Catalan(n)\)

考虑第n个点的位置(作为叶子节点),通过手胡,可以发现有n个位置可以作为叶子节点,于是方案为\(Catalan(n-1)\)

因此。。。\(ans=\frac{Catalan(n-1)*n}{Catalan(n)}\)

化简一下就是\(\frac{n*(n+1)}{4*n-2}\)

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
double n;
int main() {
n = in();
printf("%.10f", (double)((n) * (n + 1)) / (4.0 * n - 2));
return 0; }

P3978 [TJOI2015]概率论的更多相关文章

  1. luogu P3978 [TJOI2015]概率论

    看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...

  2. [洛谷P3978][TJOI2015]概率论

    题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...

  3. 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论

    题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...

  4. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  5. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  6. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  7. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  8. 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论

    题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...

  9. 题解 P3978 【[TJOI2015]概率论】

    这道题...好像是第一道我自己切出来的黑题... 先说一句,牛顿二项式蒟蒻并不会,可以说是直接套结论. 求诸位老爷轻喷. 这道题用卡特兰数搞. 卡特兰数这玩意从普及组初赛一路考到省选,十分有用. 如果 ...

随机推荐

  1. 某个应用使cpu使用率100%

    --CPU使用率 Linux是一个多任务的操作系统,将每个cpu的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉 为了维护cpu时间,linux通过事先定义的 ...

  2. Spring学习十 rest

    1:  Web  service:  是一个大的概念范畴,它表现了一种设计思想 SOAP 是 Web service 的一个重要组成部份. SOAP 是一种协议而非详细产品.SOAP 是通过 XML ...

  3. rails表单控件helper

    1.form加入HTML属性 <%= form_for(@device, :html => {:method=>"post", :id=>"for ...

  4. paramiko远程

    安装paramiko后,看下面例子: 复制代码代码如下: import paramiko #设置ssh连接的远程主机地址和端口t=paramiko.Transport((ip,port))#设置登录名 ...

  5. xcode编写c/c++静态库使用系统头文件问题

    c/c++编写的静态库中有引用ios系统头文件比如: #include <EGL/egl.h> 在xcode编译的时候需要设置静态库程序: Build Settings-Header Se ...

  6. C#连接MSSQL

    本文将介绍如何用C#连接MSSQL,C#连接SQL十分简单.我们一步一步来操作. 1.打开Microsoft SQL Server Management Studio创建一个数据库,这里我创建一个数据 ...

  7. C#windows窗体应用程序如何自适应大小

    用C#的windows窗体应用程序做界面十分轻松,但是系统默认是没有让控件跟随窗体的大小改变而已改变的.所以需要我们手动去设置让窗体控件随着窗体的大小改变而改变.所以我们只需要将控件选择 然后把Anc ...

  8. Jedis连接redis的一些基本操作

    Jedis其实就是redis的一个连接方式 需要的jar包:

  9. CSS代码重构与优化之路(转)

    CSS代码重构与优化之路   阅读目录 CSS代码重构的目的 CSS代码重构的基本方法 CSS方法论 我自己总结的方法 写CSS的同学们往往会体会到,随着项目规模的增加,项目中的CSS代码也会越来越多 ...

  10. 杭电acm 1039题

    这道题也比较简单,写三个函数判断三个条件即可..... 但是开始时我按照已经注释掉的提交,居然提示WA,我百思不得其解,后改成上面的判断式就可以了,求高手解答.... #include "i ...