P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\)
为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?
判断两棵树是否同构的伪代码如下:

\(\color{#0066ff}{输入格式}\)
输入一个正整数n,表示有根树的结点数
\(\color{#0066ff}{输出格式}\)
输出这棵树期望的叶子节点数,要求误差小于1e-9
\(\color{#0066ff}{输入样例}\)
1
3
\(\color{#0066ff}{输出样例}\)
1.000000000
1.200000000
\(\color{#0066ff}{数据范围与提示}\)
对于30%的数据,1 ≤ n ≤ 10
对于70%的数据,1 ≤ n ≤ 100
对于100%的数据,1 ≤ n ≤ \(10^9\)
\(\color{#0066ff}{ 题解 }\)
根据概率,显然\(ans=\frac{\sum二叉树叶子节点个数}{二叉树个数}\)
n个点的二叉树个数为\(Catalan(n)\)
考虑第n个点的位置(作为叶子节点),通过手胡,可以发现有n个位置可以作为叶子节点,于是方案为\(Catalan(n-1)\)
因此。。。\(ans=\frac{Catalan(n-1)*n}{Catalan(n)}\)
化简一下就是\(\frac{n*(n+1)}{4*n-2}\)
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
double n;
int main() {
n = in();
printf("%.10f", (double)((n) * (n + 1)) / (4.0 * n - 2));
return 0;
}
P3978 [TJOI2015]概率论的更多相关文章
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- [洛谷P3978][TJOI2015]概率论
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...
- 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 题解 P3978 【[TJOI2015]概率论】
这道题...好像是第一道我自己切出来的黑题... 先说一句,牛顿二项式蒟蒻并不会,可以说是直接套结论. 求诸位老爷轻喷. 这道题用卡特兰数搞. 卡特兰数这玩意从普及组初赛一路考到省选,十分有用. 如果 ...
随机推荐
- svn使用技巧一:更新、提交、资源库同步之间区别
提交:是用本地文件覆盖服务器的文件,只有提交会导致服务器上发生变化 更新:只是把服务器上最新版本下载到客户端,规则如下: 1.如果你本地的某个文件没有修改过,而服务器上的这个文件别人已经提交过新版本, ...
- JavaScript基本概念A
简介 如果需要了解这些概念, 您应该熟悉 JS 的基本知识. 弱类型 在也无需绞尽脑汁觉得到底采用 float.double,int 还是 short 或是 long 还是 String.只需这样定义 ...
- python 面向对象之反射及内置方法
面向对象之反射及内置方法 一.静态方法(staticmethod)和类方法(classmethod) 类方法:有个默认参数cls,并且可以直接用类名去调用,可以与类属性交互(也就是可以使用类属性) 静 ...
- JVM Class Loading过程
转自:<Java Performance>第三章 VM Class Loading The Hotspot VM supports class loading as defined by ...
- ORA-00904: 标识符无效——解决方案
转自:https://blog.csdn.net/jajavaja/article/details/49122639 建表时列名用双引号引着(用Navicat工具建表默认是加上双引号的),java连接 ...
- latex如何进行多行注释
单行注释:当LATEX 处理一个源文件时,如果遇到一个百分号%,LATEX 将忽略% 后的该行内容,换11行符以及下一行前的空白字符.多行注释:\begin{comment}rather stupid ...
- eclipse 中文版 变成 英文版 方法
找到目录运行命令 “eclipse.exe -nl en”
- URL操作
ThinkPHP 的 URL 操作.主要涉及到 URL 路径大小写.伪静态.生成以及模版中的 U()方法. 一.URL大小写 系统默认的规范是根据 URL 里面的模块名.控制器名来定位到具体的控制器类 ...
- ES02 变量、数组、对象、方法
1 变量 1.1 变量的声明 利用var关键字来声明变量,例如: var a = 100; <!DOCTYPE html> <html> <head> <me ...
- Easyui datebox单击文本框显示日期选择 eayui版本1.5.4.1
Easyui默认是点击文本框后面的图标显示日期,体验很不好,所以我想单击文本框就显示日期选择框,网上很多版本是1.3,1.4的,于是自己就比葫芦画瓢改了一个1.5.4.1的版本. 我参考了网上这个帖子 ...