BZOJ2125 最短路 【仙人掌最短路】
题目
给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径。
输入格式
输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个整数v,u,w表示一条无向边v-u,长度为w 最后Q行,每行两个整数v,u表示一组询问
输出格式
输出Q行,每行一个整数表示询问的答案
输入样例
9 10 2
1 2 1
1 4 1
3 4 1
2 3 1
3 7 1
7 8 2
7 9 2
1 5 3
1 6 4
5 6 1
1 9
5 7
输出样例
5
6
提示
对于100%的数据,N<=10000,Q<=10000
题解
仙人掌的题目,都与树上的方法相联系,再考虑环的影响
首先如果在树上,我们设d[u]表示u到根的距离,两点u,v的距离dis=d[u]+d[v]−2∗d[lca]
现在加上几个环,我们先跑一遍dfs找出所有的环以及算出d[],然后重构树,将环上的点全部连到该环最高点上,距离为环上到最高点的最短路
这样子构建出来的树,我们可以用倍增套用树的方法求解
如果求解时两点倍增时算得的最后祖先属于同一个环,那么就考虑环的贡献
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,M,Q,h[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
int h2[maxn];
struct E{int to,nxt;}e[2 * maxn];
inline void add(int u,int v){e[ne] = (E){v,h2[u]}; h2[u] = ne++;}
int dfn[maxn],low[maxn],d[maxn],dep[maxn],cnt = 0;
int fa[maxn][20],dis[maxn][20];
int cir[maxn],siz[maxn];
void getcir(int rt,int k){
int to = ed[k].to,len = d[to] - d[rt] + ed[k].w;
siz[++siz[0]] = len;
for (int i = to; i != rt; i = fa[i][0]){
add(rt,i);
dis[i][0] = min(d[i] - d[rt],len - d[i] + d[rt]);
cir[i] = siz[0];
}
}
void dfs(int u){
dfn[u] = low[u] = ++cnt; int to;
Redge(u) if ((to = ed[k].to) != fa[u][0]){
if (!dfn[to]){
fa[to][0] = u;
d[to] = d[u] + ed[k].w;
dfs(to);
low[u] = min(low[u],low[to]);
}else low[u] = min(low[u],dfn[to]);
if (dfn[u] < low[to]) add(u,to),dis[to][0] = ed[k].w;
}
Redge(u) if (fa[to = ed[k].to][0] != u && dfn[u] < dfn[to])
getcir(u,k);
}
void dfs2(int u){
REP(i,15){
fa[u][i] = fa[fa[u][i - 1]][i - 1];
dis[u][i] = dis[u][i - 1] + dis[fa[u][i - 1]][i - 1];
}
for (int k = h2[u],to; k; k = e[k].nxt){
fa[to = e[k].to][0] = u; dep[to] = dep[u] + 1;
dfs2(to);
}
}
int solve(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
int ans = 0,D = dep[u] - dep[v];
for (int i = 0; (1 << i) <= D; i++)
if ((1 << i) & D) ans += dis[u][i],u = fa[u][i];
if (u == v) return ans;
for (int i = 15; i >= 0; i--)
if (fa[u][i] != fa[v][i]){
ans += dis[u][i] + dis[v][i];
u = fa[u][i]; v = fa[v][i];
}
if (cir[u] && cir[u] == cir[v])
ans += min(abs(d[u] - d[v]),siz[cir[u]] - abs(d[u] - d[v]));
else ans += dis[u][0] + dis[v][0];
return ans;
}
int main(){
N = RD(); M = RD(); Q = RD(); int a,b,w;
while (M--) a = RD(),b = RD(),w = RD(),build(a,b,w);
ne = 1;
dfs(1);
dep[1] = 1;
dfs2(1);
while (Q--){
a = RD(); b = RD();
printf("%d\n",solve(a,b));
}
return 0;
}
BZOJ2125 最短路 【仙人掌最短路】的更多相关文章
- BZOJ.2125.最短路(仙人掌 最短路Dijkstra)
题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- 最短路和次短路问题,dijkstra算法
/* *题目大意: *在一个有向图中,求从s到t两个点之间的最短路和比最短路长1的次短路的条数之和; * *算法思想: *用A*求第K短路,目测会超时,直接在dijkstra算法上求次短路; ...
- UESTC30-最短路-Floyd最短路、spfa+链式前向星建图
最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同 ...
- POJ---3463 Sightseeing 记录最短路和次短路的条数
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9247 Accepted: 3242 Descr ...
- hdu1688(dijkstra求最短路和次短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...
- CF 672C 两个人捡瓶子 最短路与次短路思想
C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- POJ 3463 Sightseeing 【最短路与次短路】
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
随机推荐
- 理解css中的position属性
理解css中的position 两种类型的定位 static类型:只有一个值position: static.position默认值 relative类型:包括三个值,这三个值会相互影响,允许你以特定 ...
- Java分享笔记:FileOutputStream流的write方法
/*------------------------ FileOutputStream: ....//输出流,字节流 ....//write(byte[] b)方法: 将b.length个字节从指定字 ...
- mysql 数据库设计规范
MySQL数据库设计规范 目录 1. 规范背景与目的 2. 设计规范 2.1 数据库设计 2.1.1 库名 2.1.2 表结构 2.1.3 列数据类型优化 2.1.4 索引设计 2.1.5 分库分表. ...
- mybatis中oracle转mysql
刚来公司实习,遇到的第一个任务就是这个,简单记录一下思路过程.人菜的很,没啥参考价值. 测试时: 将现有的oracle库转为mysql: 用的Navicat自带数据传输功能,简单粗暴 出现的问题: 1 ...
- vim指令,快捷键汇总
Vim 命令.操作.快捷键全集 命令历史 以:和/开头的命令都有历史纪录,可以首先键入:或/然后按上下箭头来选择某个历史命令. 启动vim 在命令行窗口中输入以下命令即可 vim 直接启动vim vi ...
- bootloader 关闭看门狗
#define pWTCON 0x53000000disable_watchdog: ldr r0, =pWTCON mov r1, #0x0 str r1, [r0]
- ethereum(以太坊)(八)--Address
pragma solidity ^0.4.0; contract Test{ address _owner; uint160 _c; constructor() public{ _owner = 0x ...
- SQL tp3.2 批量更新 saveAll
/** * 批量更新数据 * @param [array] $datas [更新数据] * @param [string] $table_name [表名] */ public function sa ...
- POJ:3061-Subsequence(尺取法模板详解)
Subsequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18795 Accepted: 8043 Descript ...
- [Bzoj4408]神秘数(主席树)
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数. 例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = ...