题目大意:

给你一个N和K要求确定有多少种放法,使得没有两个车在一条线上。
N*N的矩阵, 有K个棋子。
题目分析:
我是用DP来写的,关于子结构的考虑是这样的。
假设第n*n的矩阵放k个棋子那么,这个推导过程如下。
 
当我们们第n*n的矩阵的时候可以考虑第(n-1)*(n-1)的矩阵经过哪些变换可以变成n*n的。
如上图蓝色方格。我们加入蓝色方格之后,矩阵就会增大一圈。
1.加入我们蓝色方格不放置棋子。 dp[n-1][k]
2.加入蓝色方格放置一枚棋子,那么我们其实有三种位置可以放置:(1)右侧蓝色(2)底侧蓝色(3)有下角。
对于每一种情况我们放置方格的位置可以有 n-k, 个故: (2*(n-k) + 1) * dp[n-1][k-1]
3.放置两个棋子, 那么放置两个棋子的话肯定不能在左下角放置。故: (n-k)*(n-k)*dp[n-1][k-2]
 
===========================================================================================
 
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef unsigned long long LL;
const int INF = 1e9+;
const int maxn = ;
const int MOD = ;
LL dp[maxn][];
void solve()
{
for(int i=; i<=; i++)
dp[i][] = ; for(int i=; i<=; i++)
for(int j=; j<=i; j++)
{
dp[i][j] = dp[i-][j] + (*(i-j)+) * dp[i-][j-];
if(j- >= )
dp[i][j] += (i-j+)*(i-j+) * dp[i-][j-];
}
} int main()
{
int T, n, k, cas = ;
solve();
scanf("%d", &T); while(T--)
{
scanf("%d %d", &n, &k);
printf("Case %d: %llu\n",cas++, dp[n][k]);
}
return ;
}
 
 

Light OJ 1005 - Rooks(DP)的更多相关文章

  1. 1005 - Rooks(规律)

    1005 - Rooks   PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB A rook is ...

  2. Light oj 1005 - Rooks (找规律)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1005 纸上画一下,找了一下规律,Ank*Cnk. //#pragma comm ...

  3. Light OJ 1005 - Rooks 数学题解

    版权声明:本文作者靖心.靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  4. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  5. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  6. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  7. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  8. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  9. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

随机推荐

  1. xslt语法之---If Else

    大家都知道,XSL中是没有if else的,那么要想实现if else该怎么办呢? 其实很简单 <xsl:choose> <xsl:when test="position( ...

  2. Java设计模式02:常用设计模式之工厂模式(创建型模式)

    一.工厂模式主要是为创建对象提供过渡接口,以便将创建对象的具体过程屏蔽隔离起来,达到提高灵活性的目的.  工厂模式在<Java与模式>中分为三类: 1)简单工厂模式(Simple Fact ...

  3. css选择器优化

    css选择器优化@import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@impor ...

  4. 第三篇:python高级之生成器&迭代器

    python高级之生成器&迭代器   python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container ...

  5. 11.1 afternoon

    幸运数字(number)Time Limit:1000ms Memory Limit:64MB题目描述LYK 最近运气很差,例如在 NOIP 初赛中仅仅考了 90 分,刚刚卡进复赛,于是它决定使用一些 ...

  6. base64加密解密文件

    1 //字符串加密 -(void)demo1 { //普通的 8 bit二进制数据 NSString *str = @"hello world!"; //将字符串转换成二进制数据 ...

  7. ccf集合竞价

    我不懂为什么是错误.然后零分.贴出测试. 然后即使注释掉while循环中的break部分,也是如此. #include<iostream> #include<iomanip> ...

  8. Ubuntu1404+Django1.9+Apache2.4部署配置1安装

    关于Ubuntu环境下的文章很少,搜索一些问题比较麻烦,这里将别人的做法和自己做的整合一下.这篇文章主要讲解基础的安装,至于Django1.9如何部署到Apache2.4请转到下一篇博文http:// ...

  9. cocos2d-x 之 CCArray 源码分析

    cocos2d-x 自己实现了一个数组CCArray ,下面我们来分析一下CCArray的源码 CCArray继承CCObject,所以,CCArray也具有引用计数功能和内存自动管理功能. 数组的源 ...

  10. PHP框架_ThinkPHP数据库

    目录 1.ThinkPHP数据库配置 2.ThinkPHP数据库实例化模型 3.ThinkPHP数据库CURD操作 4.ThinkPHP数据库连贯操作 1.ThinkPHP数据库配置 App/Conf ...