UVa1151 Buy or Build
填坑(p.358)
以前天真的以为用prim把n-1条边求出来就可以
现在看来是我想多了
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> const int N = + ; struct Node {
int x, y;
Node(int x = , int y = ) : x(x), y(y) {}
}p[N]; int sqr(int x) {
return x * x;
} int dist(const Node& a, const Node& b) {
return sqr(a.x - b.x) + sqr(a.y - b.y);
} struct Edge {
int u, v, w;
Edge() {}
Edge(int u, int v, int w) : u(u), v(v), w(w) {}
bool operator < (const Edge& rhs) const {
return w < rhs.w;
}
};
#include<vector>
std::vector<Edge> edges, pree; int n, ans;
int d[N], pre[N], dis[N][N];
bool inMST[N]; void prim() {
memset(d, 0x3f, sizeof d);
memset(inMST, , sizeof inMST);
ans = d[] = ;
for(int i = ; i < n; i++) {
int u = -;
for(int v = ; v < n; v++) if(!inMST[v]) {
if(u == - || d[v] < d[u]) u = v;
}
inMST[u] = ;
ans += d[u];
if(i) edges.push_back(Edge(u, pre[u], dis[u][pre[u]]));
for(int v = ; v < n; v++) if(!inMST[v]) {
if(d[v] > d[u] + dis[u][v]) {
d[v] = d[u] + dis[u][v];
pre[v] = u;
}
}
}
} int fa[N];
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
} bool merge(int x, int y) {
x = find(x), y = find(y);
if(x == y) return ;
return fa[x] = y, ;
} void UFS_init() {
for(int i = ; i < n; i++) fa[i] = i;
} void pre_kruskal() {
for(int i = ; i < n; i++) {
for(int j = i + ; j < n; j++) {
pree.push_back(Edge(i, j, dis[i][j]));
}
}
sort(pree.begin(), pree.end()); UFS_init();
int MST = n;
ans = ;
for(unsigned i = ; i < pree.size(); i++) {
const Edge& e = pree[i];
if(merge(e.u, e.v)) {
edges.push_back(e);
ans += e.w;
if(--MST == ) break;
}
}
} int q;
#include<vector>
std::vector<int> frees[];
int cost[];
#include<cassert>
void Kruskal(int mask) {
UFS_init();
int MST = n, res = ;
for(int j = ; j < q; j++) if(mask >> j & ) {
res += cost[j];
for(unsigned i = ; i < frees[j].size(); i++) {
MST -= merge(frees[j][i-], frees[j][i]);
}
} for(unsigned i = ; i < edges.size(); i++) {
if(MST == ) break;
if(merge(edges[i].u, edges[i].v)) res += edges[i].w, MST--;
}
assert(MST == );
ans = std::min(ans, res);
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif int T; scanf("%d", &T);
while(T--) {
pree.clear();
edges.clear();
scanf("%d%d", &n, &q);
for(int i = ; i < q; i++) {
int m;
scanf("%d%d", &m, cost + i);
frees[i].resize(m);
for(int j = ; j < m; j++) {
scanf("%d", &frees[i][j]);
--frees[i][j];
}
}
for(int i = ; i < n; i++) {
scanf("%d%d", &p[i].x, &p[i].y);
for(int j = ; j < i; j++) {
dis[i][j] = dis[j][i] = dist(p[i], p[j]);
}
}
pre_kruskal();
std::sort(edges.begin(), edges.end());
for(int mask = ; mask < ( << q); mask++) {
Kruskal(mask);
} printf("%d\n", ans);
if(T) puts("");
} return ;
}
UVa1151 Buy or Build的更多相关文章
- 【最小生成树+子集枚举】Uva1151 Buy or Build
Description 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q< ...
- POJ(2784)Buy or Build
Buy or Build Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1369 Accepted: 542 Descr ...
- Buy or Build (poj 2784 最小生成树)
Buy or Build Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1348 Accepted: 533 Descr ...
- Buy or Build(UVa1151)
如果枚举每个套餐,并每次都求最小生成树,总时间复杂度会很高,因而需要先求一次原图的最小生成树,则枚举套餐之后需要考虑的边大大减少了. 具体见代码: #include<cstdio> #in ...
- 洛谷 题解 UVA1151 【买还是建 Buy or Build】
[题意] 平面上有\(n(n<=1000)\)个点,你的任务是让所有n个点联通.为此,你可以新建一些边,费用等于两个端点的欧几里得距离平方.另外还有\(q(q<=8)\)个套餐可以购买,如 ...
- UVA 1151 Buy or Build MST(最小生成树)
题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...
- UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- UVa 1151 (枚举 + MST) Buy or Build
题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...
随机推荐
- 【工具篇】source Insight
不多说,阅读代码利器. 一.修改背景颜色 使用淡绿色更护眼(听说而已),菜单“选项”>>“属性”,使用自己喜欢的颜色吧.我的淡绿色RGB是181,236,207 二.行号,空格替换tabs ...
- YII 数据库相关操作
CDbConnection: 一个抽象数据库连接CDbCommand: SQL statementCDbDataReader: 匹配结果集的一行记录CDbTransaction:数据库事务 访问数据库 ...
- 24种设计模式--装饰模式【Decorator Pattern】
装饰模式在中国使用的那实在是多,中国的文化是中庸文化,说话或做事情都不能太直接,需要有技巧的,比如说话吧,你要批评一个人,你不能一上来就说你这个做的不对,那个做的不对,你要先肯定他的成绩,表扬一下优点 ...
- 速卖通api--发起授权
<? $reqURL_onLine = "https://gw.api.alibaba.com/openapi/http/1/system.oauth2/getToken/494739 ...
- diff函数的实现——LCS的变种问题
昨天去去哪儿笔试,碰到了一个我们一直很熟悉的命令(diff——ubuntu下面),可以比较字符串,即根据最长公共子串问题,如果A中有B中没有的字符输出形式如下(-ch),如果A中没有,B中有可以输出如 ...
- IOS 上传头像-b
感谢大神分享 1.首先,后台给了我这样的接口 1-后台数据接口 2.首先加上代理方法 <UIActionSheetDelegate,UINavigationControllerDelegate, ...
- Jquery的attr属性
在JS中设置节点的属性与属性值用到setAttribute(),获得节点的属性与属性值用到getAttribute(),而在jquery中,用一个attr()就可以全部搞定了,赞一个先 ^^ jque ...
- bzoj 2818: Gcd 歐拉函數
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1633 Solved: 724[Submit][Status] Descript ...
- 当今流行的 React.js 适用于怎样的 Web App?
外村 和仁(株式会社 ピクセルグリッド) React.js是什么? React.js是Facebook开发的框架. http://facebook.github.io/react/ 官网上的描述是「 ...
- 框架中的HTML DOM Event 对象
js中的this上下文会因事件而转换成html dom对象. 所以就有这样获取当前触发事件的dom对象: window.event.srcElement || window.event.target; ...