《机器学习实战》之k-近邻算法(改进约会网站的配对效果)
示例背景:
准备数据:从文本文件中解析数据
分析数据:使用Matplotlib创建散点图
import matplotlib as mpl
import matplotlib.pyplot as plt
import operator def file2matrix(filename): #获取数据
f = open(filename)
arrayOLines = f.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3),dtype=float)
#zeros(shape, dtype, order),创建一个shape大小的全为0矩阵,dtype是数据类型,默认为float,
#order表示在内存中排列的方式(以C语言或Fortran语言方式排列),默认为C语言排列
classLabelVector = []
rowIndex = 0
for line in arrayOLines:
line = line.strip()
listFormLine = line.split('\t')
returnMat[rowIndex,:] = listFormLine[0:3]
classLabelVector.append(int(listFormLine[-1]))
rowIndex += 1
return returnMat, classLabelVector if __name__ == "__main__":
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure() #图
mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['font.serif'] = ['KaiTi']
plt.xlabel('玩视频游戏所耗时间百分比')
plt.ylabel('每周消费的冰淇淋公升数')
'''
matplotlib.pyplot.ylabel(s, *args, **kwargs) override = {
'fontsize' : 'small',
'verticalalignment' : 'center',
'horizontalalignment' : 'right',
'rotation'='vertical' : }
'''
ax = fig.add_subplot(111) #将图分成1行1列,当前坐标系位于第1块处(这里总共也就1块)
ax.scatter(datingDataMat[: ,1], datingDataMat[: ,2],15.0*array(datingLabels), 15.0*array(datingLabels))
#scatter是用来画散点图的
# scatter(x,y,s=1,c="g",marker="s",linewidths=0)
# s:散列点的大小,c:散列点的颜色,marker:形状,linewidths:边框宽度
plt.show()

这是简单的创建了一下散点图,可以看到上面的图中还缺少了图例,所以下面的代码以另两列数据为例创建了带图例的散点图,代码大致还是一样的:
from numpy import *
import matplotlib as mpl
import matplotlib.pyplot as plt
import operator def file2matrix(filename): #获取数据
f = open(filename)
arrayOLines = f.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3),dtype=float)
#zeros(shape, dtype, order),创建一个shape大小的全为0矩阵,dtype是数据类型,默认为float,order表示在内存中排列的方式(以C语言或Fortran语言方式排列),默认为C语言排列
classLabelVector = []
rowIndex = 0
for line in arrayOLines:
line = line.strip()
listFormLine = line.split('\t')
returnMat[rowIndex,:] = listFormLine[0:3]
classLabelVector.append(int(listFormLine[-1]))
rowIndex += 1
return returnMat, classLabelVector if __name__ == "__main__":
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure() #图
plt.title('散点分析图')
mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['font.serif'] = ['KaiTi']
plt.xlabel('每年获取的飞行常客里程数')
plt.ylabel('玩视频游戏所耗时间百分比')
'''
matplotlib.pyplot.ylabel(s, *args, **kwargs) override = {
'fontsize' : 'small',
'verticalalignment' : 'center',
'horizontalalignment' : 'right',
'rotation'='vertical' : }
''' type1_x = []
type1_y = []
type2_x = []
type2_y = []
type3_x = []
type3_y = []
ax = fig.add_subplot(111) #将图分成1行1列,当前坐标系位于第1块处(这里总共也就1块) index = 0
for label in datingLabels:
if label == 1:
type1_x.append(datingDataMat[index][0])
type1_y.append(datingDataMat[index][1])
elif label == 2:
type2_x.append(datingDataMat[index][0])
type2_y.append(datingDataMat[index][1])
elif label == 3:
type3_x.append(datingDataMat[index][0])
type3_y.append(datingDataMat[index][1])
index += 1 type1 = ax.scatter(type1_x, type1_y, s=30, c='b')
type2 = ax.scatter(type2_x, type2_y, s=40, c='r')
type3 = ax.scatter(type3_x, type3_y, s=50, c='y', marker=(3,1)) '''
scatter是用来画散点图的
matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, hold=None,**kwargs)
其中,xy是点的坐标,s点的大小
maker是形状可以maker=(5,1)5表示形状是5边型,1表示是星型(0表示多边形,2放射型,3圆形)
alpha表示透明度;facecolor=‘none’表示不填充。
''' ax.legend((type1, type2, type3), ('不喜欢', '魅力一般', '极具魅力'), loc=0)
'''
loc(设置图例显示的位置)
'best' : 0, (only implemented for axes legends)(自适应方式)
'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10,
'''
plt.show()
效果还是很不错的:

准备数据:归一化数值
当我们计算样本之间的欧几里得距离时,由于有些数值较大,所以它对结果整体的影响也就越大,那么小数据的可能就毫无影响了。在这个例子中飞行常客里程数很大,然而其余两列数据很小。为了解决这个问题,需要把数据相应的进行比例兑换,也就是这里需要做的归一化数值,将所有数值转化为[0,1]之间的值。
公式为:
$newValue = (oldValue-min)/(max-min)$ ($min$和$max$分别是数据集中的最小特征值和最大特征值)
def autoNorm(dataSet): #归一化数值
minVals = dataSet.min(0) #0表示每列的最小值,1表示每行的最小值,以一维矩阵形式返回
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
测试并构造完整算法
根据这1000个数据,将其中的100个作为测试数据,另900个作为训练集,看着100个数据集的正确率。
最后根据自己输入的测试数据来判断应该出现的结果是什么。
from numpy import *
import matplotlib as mpl
import matplotlib.pyplot as plt
import operator def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #统一矩阵,实现加减
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #进行累加,axis=0是按列,axis=1是按行
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort() #按升序进行排序,返回原下标
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #get是字典中的方法,前面是要获得的值,后面是若该值不存在时的默认值
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename): #获取数据
f = open(filename)
arrayOLines = f.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3),dtype=float)
#zeros(shape, dtype, order),创建一个shape大小的全为0矩阵,dtype是数据类型,默认为float,order表示在内存中排列的方式(以C语言或Fortran语言方式排列),默认为C语言排列
classLabelVector = []
rowIndex = 0
for line in arrayOLines:
line = line.strip()
listFormLine = line.split('\t')
returnMat[rowIndex,:] = listFormLine[0:3]
classLabelVector.append(int(listFormLine[-1]))
rowIndex += 1
return returnMat, classLabelVector def autoNorm(dataSet): #归一化数值
minVals = dataSet.min(0) #0表示每列的最小值,1表示每行的最小值,以一维矩阵形式返回
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals def datingClassTest(datingDataMat, datingLabels): #测试正确率
hoRatio = 0.1
m = datingDataMat.shape[0]
numTestVecs = int(hoRatio*m)
numError = 0.0
for i in range(numTestVecs):
classifierResult = classify0(datingDataMat[i,:], datingDataMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
print('The classifier came back with: %d, the real answer is: %d.' %(classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
numError += 1
print('错误率为 %f' %(numError/float(numTestVecs))) def classifyPerson(datingDataMat, datingLabels, ranges, minVals):
result = ['not at all', 'in small doses', 'in large doses']
print('请输入相应信息:')
percentTats = float(input('percentage of time spent playing video games?'))
ffMiles = float(input('frequent flier miles earned per year?'))
iceCream = float(input('liters of ice cream consumed per year?'))
inArr = array([ffMiles, percentTats, iceCream])
classifyResult = classify0((inArr-minVals)/ranges, datingDataMat, datingLabels, 3)
print('You will probably like this person: ', result[classifyResult-1]) if __name__ == "__main__":
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
datingDataMat, ranges, minVals = autoNorm(datingDataMat) #归一化数值
datingClassTest(datingDataMat, datingLabels)
classifyPerson(datingDataMat, datingLabels, ranges, minVals)
fig = plt.figure() #图
plt.title('散点分析图')
mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['font.serif'] = ['KaiTi']
plt.xlabel('每年获取的飞行常客里程数')
plt.ylabel('玩视频游戏所耗时间百分比')
'''
matplotlib.pyplot.ylabel(s, *args, **kwargs) override = {
'fontsize' : 'small',
'verticalalignment' : 'center',
'horizontalalignment' : 'right',
'rotation'='vertical' : }
''' type1_x = []
type1_y = []
type2_x = []
type2_y = []
type3_x = []
type3_y = []
ax = fig.add_subplot(111) #将图分成1行1列,当前坐标系位于第1块处(这里总共也就1块) index = 0
for label in datingLabels:
if label == 1:
type1_x.append(datingDataMat[index][0])
type1_y.append(datingDataMat[index][1])
elif label == 2:
type2_x.append(datingDataMat[index][0])
type2_y.append(datingDataMat[index][1])
elif label == 3:
type3_x.append(datingDataMat[index][0])
type3_y.append(datingDataMat[index][1])
index += 1 type1 = ax.scatter(type1_x, type1_y, s=30, c='b')
type2 = ax.scatter(type2_x, type2_y, s=40, c='r')
type3 = ax.scatter(type3_x, type3_y, s=50, c='y', marker=(3,1)) '''
scatter是用来画散点图的
matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, hold=None,**kwargs)
其中,xy是点的坐标,s点的大小
maker是形状可以maker=(5,1)5表示形状是5边型,1表示是星型(0表示多边形,2放射型,3圆形)
alpha表示透明度;facecolor=‘none’表示不填充。
''' ax.legend((type1, type2, type3), ('不喜欢', '魅力一般', '极具魅力'), loc=0)
'''
loc(设置图例显示的位置)
'best' : 0, (only implemented for axes legends)(自适应方式)
'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10,
'''
plt.show()
可以看到错误率为5%:


《机器学习实战》之k-近邻算法(改进约会网站的配对效果)的更多相关文章
- 使用K近邻算法改进约会网站的配对效果
1 定义数据集导入函数 import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1 代表不喜欢,2 代表魅力一般,3 代表极具魅力 Par ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- k-近邻(KNN)算法改进约会网站的配对效果[Python]
使用Python实现k-近邻算法的一般流程为: 1.收集数据:提供文本文件 2.准备数据:使用Python解析文本文件,预处理 3.分析数据:可视化处理 4.训练算法:此步骤不适用与k——近邻算法 5 ...
- 机器学习读书笔记(二)使用k-近邻算法改进约会网站的配对效果
一.背景 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可以进行如下分类 不喜欢的人 魅力一般的人 极具魅 ...
- 【Machine Learning in Action --2】K-近邻算法改进约会网站的配对效果
摘自:<机器学习实战>,用python编写的(需要matplotlib和numpy库) 海伦一直使用在线约会网站寻找合适自己的约会对象.尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的 ...
- 使用k-近邻算法改进约会网站的配对效果
---恢复内容开始--- < Machine Learning 机器学习实战>的确是一本学习python,掌握数据相关技能的,不可多得的好书!! 最近邻算法源码如下,给有需要的入门者学习, ...
- 《机器学习实战》-k近邻算法
目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python ...
- 机器学习实战1-2.1 KNN改进约会网站的配对效果 datingTestSet2.txt 下载方法
今天读<机器学习实战>读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文 ...
- KNN算法项目实战——改进约会网站的配对效果
KNN项目实战——改进约会网站的配对效果 1.项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
随机推荐
- BIOS 搭配 MBR/GPT 的开机流程
鸟哥私房菜书上内容: BIOS 搭配 MBR/GPT 的开机流程 在计算机概论里面我们有谈到那个可爱的BIOS与CMOS两个东西, CMOS是记录各项硬件参数且嵌入在主板上面的储存器,BIOS则是一个 ...
- 设计模式之Interpreter(解释器)(转)
Interpreter定义: 定义语言的文法 ,并且建立一个解释器来解释该语言中的句子. Interpreter似乎使用面不是很广,它描述了一个语言解释器是如何构成的,在实际应用中,我们可能很少去构造 ...
- [转载]oracle的常用函数 instr() 和substr()函数
在Oracle中 可以使用instr函数对某个字符串进行判断,判断其是否含有指定的字符. 在一个字符串中查找指定的字符,返回被查找到的指定的字符的位置. 语法: instr(sourceString, ...
- 每日linux命令学习-head命令和tail命令
本节主要学习了linux文件浏览的相关命令,包括cat.less.more.read.tail等,由于本人经常使用cat.less.more命令,已经较为熟悉,所以本节重点学习head命令和tail命 ...
- Apache正向代理和反向代理
一.正向代理 先说一正向代理(Forward Proxy),通常普通用户使用的比较多的,是正向代理.也就是在浏览器的网络连接属性框中,填写上一个代理服务器的ip和端口,即可通过代理服务器中转,去浏览网 ...
- Spring Boot(六):如何使用mybatis
Spring Boot(六):如何使用mybatis orm框架的本质是简化编程中操作数据库的编码,发展到现在基本上就剩两家了,一个是宣称可以不用写一句SQL的hibernate,一个是可以灵活调试动 ...
- git-tag 标签相关操作
标签可以针对某一时间点的版本做标记,常用于版本发布. 列出标签 $ git tag # 在控制台打印出当前仓库的所有标签$ git tag -l ‘v0.1.*’ # 搜索符合模式的标签 打标签 gi ...
- python识别图片生成字符模式
此python文件来自D7哥, 放在这里备份. 用法 python3 PIL\&argparse.py 1.jpg -o test.txt --width 300 --height 300 p ...
- linux判断文件大小
第一条code ll -s | tail -n +2 | awk '$1 >= 10 {print $1,$10 "容量大于10"} $1 <= 9 {print $1 ...
- opencv学习之路(9)、对比度亮度调整与通道分离
一.对比度亮度调整 #include<opencv2/opencv.hpp> using namespace cv; #define WIN_NAME "输出图像" M ...