http://poj.org/problem?id=1584

题意

按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包。

再给定一个圆形(圆心坐标和半径),判断这个圆是否完全在n边形内部。

分析

1.判断给出了多边形是不是凸多边形。

2.判断圆包含在凸多边形中:一定要保证圆心在凸多边形里面。然后判断圆心到每条线段的距离要大于等于半径。。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//判断凸多边形
//允许共线边
//点可以是顺时针给出也可以是逆时针给出
//点的编号1~n-1
bool isconvex(Point poly[],int n)
{
bool s[];
memset(s,false,sizeof(s));
for(int i = ;i < n;i++)
{
s[sgn( (poly[(i+)%n]-poly[i])^(poly[(i+)%n]-poly[i]) )+] = true;
if(s[] && s[])return false;
}
return true;
}
//点到线段的距离
//返回点到线段最近的点
Point NearestPointToLineSeg(Point P,Line L)
{
Point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
if(t >= && t <= )
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if(dist(P,L.s) < dist(P,L.e))
result = L.s;
else result = L.e;
}
return result;
}
//*判断点在线段上
bool OnSeg(Point P,Line L)
{
return
sgn((L.s-P)^(L.e-P)) == &&
sgn((P.x - L.s.x) * (P.x - L.e.x)) <= &&
sgn((P.y - L.s.y) * (P.y - L.e.y)) <= ;
}
//*判断点在凸多边形内
//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
//点的编号:0~n-1
//返回值:
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inConvexPoly(Point a,Point p[],int n)
{
for(int i = ;i < n;i++)
{
if(sgn((p[i]-a)^(p[(i+)%n]-a)) < )return -;
else if(OnSeg(a,Line(p[i],p[(i+)%n])))return ;
}
return ;
}
//*判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= ;
}
//*判断点在任意多边形内
//射线法,poly[]的顶点数要大于等于3,点的编号0~n-1
//返回值
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inPoly(Point p,Point poly[],int n)
{
int cnt;
Line ray,side;
cnt = ;
ray.s = p;
ray.e.y = p.y;
ray.e.x = -100000000000.0;//-INF,注意取值防止越界 for(int i = ;i < n;i++)
{
side.s = poly[i];
side.e = poly[(i+)%n]; if(OnSeg(p,side))return ; //如果平行轴则不考虑
if(sgn(side.s.y - side.e.y) == )
continue; if(OnSeg(side.s,ray))
{
if(sgn(side.s.y - side.e.y) > )cnt++;
}
else if(OnSeg(side.e,ray))
{
if(sgn(side.e.y - side.s.y) > )cnt++;
}
else if(inter(ray,side))
cnt++;
}
if(cnt % == )return ;
else return -;
}
Point p[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
double R,x,y;
while(scanf("%d",&n) == )
{
if(n < )break;
scanf("%lf%lf%lf",&R,&x,&y);
for(int i = ;i < n;i++)
p[i].input();
if(!isconvex(p,n))
{
printf("HOLE IS ILL-FORMED\n");
continue;
}
Point P = Point(x,y);
if(inPoly(P,p,n) < )
{
printf("PEG WILL NOT FIT\n");
continue;
}
bool flag = true;
for(int i = ;i < n;i++)
{
if(sgn(dist(P,NearestPointToLineSeg(P,Line(p[i],p[(i+)%n]))) - R) < )
{
flag = false;
break;
}
}
if(flag)printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n");
}
return ;
}

POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  2. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  3. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  4. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  6. POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上

    题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...

  7. 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole

    题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...

  8. POJ 1584 A Round Peg in a Ground Hole

    先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...

  9. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. PAT 1033 旧键盘打字

    https://pintia.cn/problem-sets/994805260223102976/problems/994805288530460672 旧键盘上坏了几个键,于是在敲一段文字的时候, ...

  2. Activiti For Eclipse(Mars)插件配置

    Activiti BPMN 2.0 designer : http://www.activiti.org/designer/update/

  3. Git—学习笔记1

    Git是一种分布式版本控制工具,现阶段比较流行的版本控制工具主要分为:集中式版本控制工具盒分布式版本控制工具. 集中式版本控制工具:SVN和CVS为代表 集中式版本控制系统(每次都得从SVN服务器数据 ...

  4. Mysql8 连接提示 Client does not support authentication protocol requested by server; consider upgrading MySQL client 解决方法

    USE mysql;ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password';FLUSH PR ...

  5. Jenkins中使用GitLab的配置

    1. 概述 在Jenkins中从GitLab上拉取代码进行打包或测试. 2. 安装 Jenkins和GitLab默认已经安装好,安装过程此处不再赘述. 在Jenkins上安装Git和Gitlab插件, ...

  6. Django-website 程序案例系列-10 cookie 和 session的应用

    cookie:  现在所有网站基本都要开启cookie 客户端浏览器上的一个文件 例如:   {‘key’: 'sefwefqefwefw'} 是一个键值对 简单实现cookie认证: user_in ...

  7. MT【55】近零点

    [Among the natural enemy of mathematics, the most important thing is that how do we konw     somethi ...

  8. 洛谷 P1381 单词背诵 解题报告

    P1381 单词背诵 题目描述 灵梦有\(n\)个单词想要背,但她想通过一篇文章中的一段来记住这些单词. 文章由\(m\)个单词构成,她想在文章中找出连续的一段,其中包含最多的她想要背的单词(重复的只 ...

  9. bzoj4985 评分 (二分答案+dp)

    首先二分一个答案x,然后我们把>=x的数看成1,<x的数看成0,那如果最后剩下1,这个答案就是合法的. 那我们就来算让某一位得1至少需要填几个1(设这个值是f[i]) i=1..n时,显然 ...

  10. JVM复习总结

    运行时数据区域 图中深色区域为,由所有线程共享的数据区域,其他为线程隔离的数据区. 程序计数器 程序计数器可以看作是当前线程执行的字节码的行号指示器. 虚拟机栈 虚拟机栈描述的是Java方法执行的内存 ...