How many zero's and how many digits ? UVA - 10061
Given a decimal integer number you will have to find out how many trailing zeros will be there in its
factorial in a given number system and also you will have to find how many digits will its factorial have
in a given number system? You can assume that for a b based number system there are b different
symbols to denote values ranging from 0 . . . b − 1.
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number
N (a 20bit unsigned number) and a decimal number B (1 < B ≤ 800), which is the base of the number
system you have to consider. As for example 5! = 120 (in decimal) but it is 78 in hexadecimal number
system. So in Hexadecimal 5! has no trailing zeros.
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number
have in the given number system and also how many digits will the factorial of that number have in
that given number system. Separate these two numbers with a single space. You can be sure that the
number of trailing zeros or the number of digits will not be greater than 231 − 1.
Sample Input
2 10
5 16
5 10
Sample Output
0 1
0 2
1 3
求k进制下,n的阶乘的位数以及末尾0数。
位数求法很简单:我们只要知道一个m位的b进制数n,n一定会满足 b^(m-1)<=n<b^m (用十进制数模拟一下,就可以得到结论),两边同时 取log(b) 得到 log(n) <= m,对于n!就是 log1+log2+...+log(n)。
然后求末尾0数的话,我们只要将其分解质因子,看能凑齐多少个k。具体看代码吧~
// Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define debug(a) cout<<#a<<" = "<<a<<endl
#define test() cout<<"============"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = +;
int n, m, T, len, cnt, num, ans, Max, k; //分解质因数
int count_zero(int n, int k) {
int ans = INF;
int p[maxn], q[maxn], c[maxn];
memset(c, , sizeof(c));
memset(q, , sizeof(q)); len = ;
for(int i=; i<=k && k>; i++) {
if( k%i== ) p[len++] = i;
while( k%i== ) {
c[len-]++;
k /= i;
}
} for(int i=; i<=n; i++) {
int t = i;
for(int j=; j<len; j++) {
while( t%p[j]== && t ) {
q[j] ++;
t /= p[j];
}
}
} for(int i=; i<len; i++) {
ans = min(ans, q[i]/c[i]);
} return ans;
} int digits(int n, int k) {
double ans = 0.0;
for(int i=; i<=n; i++) {
ans = ans + log10(i+0.0);
}
ans = ans/log10(k+0.0)+1.0;
return (int)ans;
} void input(){
while( cin >> n >> k ) {
cout << count_zero(n, k) << " " << digits(n, k) << endl;
}
} int main() {
input();
return ;
}
How many zero's and how many digits ? UVA - 10061的更多相关文章
- uva 10061 How many zero's and how many digits ?
How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...
- UVA - 10061 How many zero's and how many digits ?
n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...
- UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)
题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k. k暂时不用直接转成b进制. (1 ...
- n!在k进制下的后缀0
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...
- [LeetCode] Reconstruct Original Digits from English 从英文中重建数字
Given a non-empty string containing an out-of-order English representation of digits 0-9, output the ...
- [LeetCode] Remove K Digits 去掉K位数字
Given a non-negative integer num represented as a string, remove k digits from the number so that th ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- [LeetCode] Add Digits 加数字
Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...
- LeetCode 258. Add Digits
Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...
随机推荐
- VueI18n的应用
.npm install vue-i18n .在 main.js 中引入 vue-i18n import VueI18n from 'vue-i18n' Vue.use(VueI18n) .在main ...
- npm install webpack -g
npm install webpack -g 全局安装webpack
- Spark SQL 函数全集
org.apache.spark.sql.functions是一个Object,提供了约两百多个函数. 大部分函数与Hive的差不多. 除UDF函数,均可在spark-sql中直接使用. 经过impo ...
- Java通过POI读取Excel
package com.hd.all.test.testjava; import java.io.File; import java.io.FileInputStream; import java.i ...
- ASP.Net中的四种状态保持机制
每个人上网可多有过这样的情况,当我们登陆某个网站时,在登陆的旁边会有一个 "记住我" 的复选框,有的网站还会让用户选择记住我.这个记住我是怎么实现的呢? 其实就用利用的是cooki ...
- huawei
线程堆栈(Thread Stack)和托管堆(Managed Heap) 每个正在运行的程序都对应着一个进程 (process),在一个进程内部,可以有一个或多个线程(thread),每个线程都拥有一 ...
- 转: Java LinkedList基本用法
LinkedList类是双向列表,列表中的每个节点都包含了对前一个和后一个元素的引用.LinkedList的构造函数如下1. public LinkedList(): ——生成空的链表2. publ ...
- npm发布包--所遇到的问题
npm发布包: 解决方案--npm adduser的坑:http://www.tuicool.com/articles/FZbYve npm ERR publish 403,nodejs发布包流程 : ...
- iOS 内存管理分析
内存分析 静态分析(Analyze) 不运行程序, 直接检测代码中是否有潜在的内存问题(不一定百分百准确, 仅仅是提供建议) 结合实际情况来分析, 是否真的有内存问题 动态分析(Profile == ...
- opencv-resize()放缩函数简介
主要介绍函数resize(); 图像缩放的效果图如下: 主程序代码及函数解释如下所示: /******************************************************* ...