Given a decimal integer number you will have to find out how many trailing zeros will be there in its
factorial in a given number system and also you will have to find how many digits will its factorial have
in a given number system? You can assume that for a b based number system there are b different
symbols to denote values ranging from 0 . . . b − 1.
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number
N (a 20bit unsigned number) and a decimal number B (1 < B ≤ 800), which is the base of the number
system you have to consider. As for example 5! = 120 (in decimal) but it is 78 in hexadecimal number
system. So in Hexadecimal 5! has no trailing zeros.
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number
have in the given number system and also how many digits will the factorial of that number have in
that given number system. Separate these two numbers with a single space. You can be sure that the
number of trailing zeros or the number of digits will not be greater than 231 − 1.
Sample Input
2 10
5 16
5 10
Sample Output
0 1
0 2
1 3

求k进制下,n的阶乘的位数以及末尾0数。

位数求法很简单:我们只要知道一个m位的b进制数n,n一定会满足    b^(m-1)<=n<b^m  (用十进制数模拟一下,就可以得到结论),两边同时 取log(b) 得到 log(n) <= m,对于n!就是 log1+log2+...+log(n)。

然后求末尾0数的话,我们只要将其分解质因子,看能凑齐多少个k。具体看代码吧~

// Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define debug(a) cout<<#a<<" = "<<a<<endl
#define test() cout<<"============"<<endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = +;
int n, m, T, len, cnt, num, ans, Max, k; //分解质因数
int count_zero(int n, int k) {
int ans = INF;
int p[maxn], q[maxn], c[maxn];
memset(c, , sizeof(c));
memset(q, , sizeof(q)); len = ;
for(int i=; i<=k && k>; i++) {
if( k%i== ) p[len++] = i;
while( k%i== ) {
c[len-]++;
k /= i;
}
} for(int i=; i<=n; i++) {
int t = i;
for(int j=; j<len; j++) {
while( t%p[j]== && t ) {
q[j] ++;
t /= p[j];
}
}
} for(int i=; i<len; i++) {
ans = min(ans, q[i]/c[i]);
} return ans;
} int digits(int n, int k) {
double ans = 0.0;
for(int i=; i<=n; i++) {
ans = ans + log10(i+0.0);
}
ans = ans/log10(k+0.0)+1.0;
return (int)ans;
} void input(){
while( cin >> n >> k ) {
cout << count_zero(n, k) << " " << digits(n, k) << endl;
}
} int main() {
input();
return ;
}

How many zero's and how many digits ? UVA - 10061的更多相关文章

  1. uva 10061 How many zero's and how many digits ?

    How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...

  2. UVA - 10061 How many zero&#39;s and how many digits ?

    n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...

  3. UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)

    题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k.  k暂时不用直接转成b进制. (1 ...

  4. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  5. [LeetCode] Reconstruct Original Digits from English 从英文中重建数字

    Given a non-empty string containing an out-of-order English representation of digits 0-9, output the ...

  6. [LeetCode] Remove K Digits 去掉K位数字

    Given a non-negative integer num represented as a string, remove k digits from the number so that th ...

  7. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  8. [LeetCode] Add Digits 加数字

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  9. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

随机推荐

  1. Oracle下SQL学习笔记

    主机字符串:as sysdba alter user scott account unlock;//解锁scott,不会就谷歌检索 DML语句,增.删.查.改 select语句:熟悉表结构 desc ...

  2. php合并数组并保留键值的方法

    答案:使用 + 连接两个数组,替换array_merge()函数. php合并数组,一般会使用array_merge方法. array_merge — 合并一个或多个数组 array array_me ...

  3. [py]py异常应用

    异常执行路径 代码参考 try: text = input('请输入 --> ') except EOFError: print('为什么你按下了EOF?') except KeyboardIn ...

  4. IOP知识点(2)

    1   URL资源访问不足时,需要添加URL权限 2   重定向问题解决办法:3  cloud-service-factory 项目 gradlew方法 1   URL资源访问不足时,需要添加URL权 ...

  5. vuex中的dispatch和commit

    dispatch:含有异步操作,eg:向后台提交数据,写法: this.$store.dispatch('mutations方法名',值) commit:同步操作,写法:this.$store.com ...

  6. python package

    简要说一下,一个python模块就是一个python文件:一个包就是存放python模块的目录结构,并且包下边必须要有一个可以为空的__init__.py模块 //test.py from mypac ...

  7. windows go dll 框架

    乘着还没有添加商业功能之前,先给大家把福利分享了 希望有需要的朋友能够用的上 这个框架是在用windows平台,GO做的http/https服务,调用dll现有的库接口实现特定功能的大框架 //dll ...

  8. !! MACD战法总结

    我现在只发技术,不预测大盘.其实说实话,大盘不用预测,只要按照guoweijohn战法,有买入信号就入,有卖出信号就出..你也会成为股神..不是吹牛,且听慢慢分解 股市有三种市场: 一.牛市 二.震荡 ...

  9. G 面经 && Leetcode: Longest Repeating Character Replacement

    Given a string that consists of only uppercase English letters, you can replace any letter in the st ...

  10. Docker服务端和客户端

    Docker是一个客户端-服务端(c/s)的架构程序