这玩意儿一般都是跟概率期望结合的吧,就是下面这个式子(\(max(S)\)代表集合\(S\)中的最大值,\(min(S)\)同理):
\[max(S)=\sum\limits_{T\subseteq S}(-1)^{\left | T \right |-1}min(T)\]
证明的话就考虑第\(k\)大的元素对\(max(S)\)的贡献就行了,把式子列出来之后你会发现它的贡献只有在\(k=1\)时才为\(1\),在\(k>1\)全部为\(0\)
能用它做的期望题一般都是这样的:每次操作把集合中的一个数从\(0\)变为\(1\),求全部的数都变为\(1\)的期望次数。
我们就令\(max(S)\)表示\(S\)中的元素全部变为\(1\)的期望次数,\(min(T)\)表示\(T\)中的元素至少有一个变为\(1\)的期望次数,那么它们也满足上面的那个式子(貌似是因为期望的线性性?)
给一道例题:HDU4336 Card Collector
不就是个板子吗。。。
还有一道[HAOI2015]按位或需要和\(FWT\)一起搞

min-max容斥的更多相关文章

  1. min-max 容斥

    $\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...

  2. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  5. hdu1695:数论+容斥

    题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...

  6. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  7. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  8. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  9. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  10. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

随机推荐

  1. 第八课 表格 html5学习3

    表格用来处理表格式数据的,不是用来布局的. 一.基本语法格式 <table> <tr> 行标签 <td></td> 单元格标签 </tr> ...

  2. 解决在圆角手机(如小米8)上自定义Dialog无法全屏的问题

    在小米8等一系列圆角的手机上测试项目时,发现我的自定义dialog无法全屏了,这时我的dialog全屏的解决方案还是和网上大部分人是一样的 Window window = getWindow(); i ...

  3. MFC俄罗斯方块

    经典俄罗斯方块游戏 源码百度云链接 链接:https://pan.baidu.com/s/14frk2EuFoiRCzudol2Xgvg提取码:syzk GitHub https://github.c ...

  4. ASP.NET Zero--WEB.HOST应用程序

    WEB.HOST应用程序 AspNet Zero解决方案包含一个额外的项目Web.Host,它将所有应用程序功能公开为API.因此,您可以从任何设备使用API​​.实际上,Web.Mvc项目也是这样做 ...

  5. 「Python」为什么Python里面,整除的结果会是小数?

    2018-06-08 参考资料:Python学习笔记(4)负数除法和取模运算 先来看三个式子(!这是在Python3.0下的运算结果): 输出结果: ‘//’明明是整除,为什么结果不是整数,而会出现小 ...

  6. 苹果手机对网页上样式为position:fixed的弹窗支持不好的解决办法

    在Web页面上,如果想模拟对话框效果,一般会给div元素添加position:fixed的样式来实现,然后给背景添加一个半透明的遮罩.如: .fixedDiv { position: fixed; t ...

  7. 在Linux系统安装Nodejs 最简单步骤

    1.去官网下载和自己系统匹配的文件: 英文网址:https://nodejs.org/en/download/ 中文网址:http://nodejs.cn/download/ 通过  uname -a ...

  8. Winform开发的应用环境和相关技术介绍

    随着时间的推移,Winform也算是能够坚持下来最久的技术之一了,它的昔日辉煌和现今的依旧活跃,导致了它依旧拥有者很庞大的用户群体,虽然目前很多技术日新月异的,曾经的ASP.ASP.NET WebFo ...

  9. .NET和PHP程序员如何通过技术快速变现

    刚开始写博客不足之处望大家多多指点,少一些质疑多一些帮助,我们就能成为朋友. 上一篇:<.NET程序员我是如何通过一个产品在2年内买车买房>有很多同为程序员的小伙伴们给我留言,从整体的留言 ...

  10. 偶发异常BUG,如何高效精准分析排查定位?

    偶发异常BUG,如何高效精准分析排查定位? 作为测试,经常会收到领导.同事.用户反馈过来各种各样BUG,令人措手不及 首选需要判断确认是不是BUG,不要急于给予回复,需有充分的条件给予说明回复 很多测 ...