[BZOJ 4919]大根堆
Description
给定一棵 \(n\) 个节点的有根树,每个点有一个权值 \(val_i\) 。你需要选择尽可能多的节点,使得:对于任意两个点 \(i,j\) ,如果 \(i\) 在树上是 \(j\) 的祖先,那么 \(v_i>v_j\) 。请计算可选的最多的点数,注意这些点不必形成这棵树的一个连通子树。
\(1\leq n\leq 200000\)
Solution
记 \(f_{u,i}\) 表示在 \(u\) 节点的子树中选取的最大的点权为 \(i\) 的方案最大值。
那么转移就是枚举其子树中的状态,并在其它的子树中找到点权小于等于其的最大的方案值。
这样是 \(O(n^2)\) 的,考虑优化更新过程。
容易发现,转移时就是用一个前缀最大值更新一个后缀,用线段树维护,合并节点信息时启发式合并即可。
复杂度为 \(O(n\log_2^2 n)\) 的。
Code
#include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int N = 200000, inf = ~0u>>1;
int n, val[N+5], f, b[N+5], tot, size[N+5], s[N+5][3], top;
vector<int>to[N+5];
struct Segment_tree {
int root[N+5], ch[N*50+5][2], maxn[N*50+5], tag[N*50+5], pos;
void pushdown(int o) {
tag[ch[o][0]] += tag[o], tag[ch[o][1]] += tag[o];
maxn[ch[o][0]] += tag[o], maxn[ch[o][1]] += tag[o];
tag[o] = 0;
}
void get(int o, int l, int r) {
if (!o) return;
if (l == r) {s[++top][0] = l, s[top][1] = maxn[o]; return; }
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
get(ch[o][0], l, mid); get(ch[o][1], mid+1, r);
}
void update(int &o, int l, int r, int loc, int val) {
if (!o) o = ++pos; maxn[o] = max(maxn[o], val);
if (l == r) return;
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
if (loc <= mid) update(ch[o][0], l, mid, loc, val);
else update(ch[o][1], mid+1, r, loc, val);
}
void modify(int o, int l, int r, int a, int b, int val) {
if (!o || a > b) return;
if (a <= l && r <= b) {tag[o] += val, maxn[o] += val; return; }
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
if (a <= mid) modify(ch[o][0], l, mid, a, b, val);
if (b > mid) modify(ch[o][1], mid+1, r, a, b, val);
maxn[o] = 0;
if (ch[o][0]) maxn[o] = max(maxn[ch[o][0]], maxn[o]);
if (ch[o][1]) maxn[o] = max(maxn[ch[o][1]], maxn[o]);
}
int query(int o, int l, int r, int a, int b) {
if (!o || a > b) return 0;
if (a <= l && r <= b) return maxn[o];
if (tag[o]) pushdown(o); int mid = (l+r)>>1, c1 = 0, c2 = 0;
if (a <= mid) c1 = query(ch[o][0], l, mid, a, b);
if (b > mid) c2 = query(ch[o][1], mid+1, r, a, b);
return max(c1, c2);
}
}T;
void dfs(int u) {
for (int i = 0, sz = to[u].size(), v; i < sz; i++) {
dfs(v = to[u][i]);
if (size[u] == 0) T.root[u] = T.root[v];
else {
int a = u, b = v;
if (size[a] > size[b]) swap(a, b);
top = 0; T.get(T.root[a], 1, tot);
for (int j = 1; j <= top; j++) {
s[j][2] = max(s[j-1][2], s[j][1]);
s[j][1] += T.query(T.root[b], 1, tot, 1, s[j][0]);
}
for (int j = 1; j <= top; j++) T.modify(T.root[b], 1, tot, s[j][0]+1, (j == top ? tot : s[j+1][0]), s[j][2]);
for (int j = 1; j <= top; j++) T.update(T.root[b], 1, tot, s[j][0], s[j][1]);
T.root[u] = T.root[b];
}
size[u] += size[v];
}
++size[u];
T.update(T.root[u], 1, tot, val[u], T.query(T.root[u], 1, tot, 1, val[u]-1)+1);
}
void work() {
scanf("%d", &n); b[++tot] = val[0] = inf;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &val[i], &f);
to[f].pb(i); b[++tot] = val[i];
}
sort(b+1, b+tot+1); tot = unique(b+1, b+tot+1)-b-1;
for (int i = 0; i <= n; i++) val[i] = lower_bound(b+1, b+tot+1, val[i])-b;
dfs(0); printf("%d\n", T.query(T.root[0], 1, tot, tot, tot)-1);
}
int main() {work(); return 0; }
[BZOJ 4919]大根堆的更多相关文章
- bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS
4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 599 Solved: 260[Submit][Stat ...
- bzoj 4919: [Lydsy六月月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- bzoj 1577: [Usaco2009 Feb]庙会捷运Fair Shuttle——小根堆+大根堆+贪心
Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...
- bzoj 5495: [2019省队联测]异或粽子【可持久化trie+大根堆】
和bzoj4504差不多,就是换了个数据结构 像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么 ...
- bzoj 4504: K个串【大根堆+主席树】
像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么快速求区间和,用可持久化线段树维护(主席树?) ...
- [Lydsy1706月赛]大根堆
4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 358 Solved: 150[Submit][Stat ...
- Java实现堆排序(大根堆)
堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...
- bzoj4919 [Lydsy1706月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
随机推荐
- javaScript设计模式-创建型设计模式
我们大家一听到设计模式就感觉设计模式是一个高端的东西,到底什么是设计模式呢?其实设计模式也就是我们的前辈在写代码的时候遇到的问题,提出的解决方案,为了方便人与人之间的交流,取了个名字,叫做设计模式. ...
- from nltk.book import * 出错的解决方法
import nltknltk.download() 在使用上面命令安装了nltk库并运行下载后,再输入from nltk.book import * 往往会出现这样的错误提示: 出现这种错误往往是由 ...
- 浅谈数据结构vector
vector: 又名 向量 1.C++中的一种数据结构. 2.是一个类. 3.相当于一个动态的数组,当程序员无法知道自己需要的数组的规模多大时,用其来解决问题可以达到最大节约空间的目的. A.使用时, ...
- Codeforces 240 F. TorCoder
F. TorCoder time limit per test 3 seconds memory limit per test 256 megabytes input input.txt output ...
- 洛谷 U10783 名字被和谐了
https://www.luogu.org/problem/show?pid=U10783 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约 ...
- service层报错找不到方法Invalid bound statement (not found)
报错信息如下 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.imooc.se ...
- GIT入门笔记(13)- GUI GIT
- Python入门之ATM+购物车代码版思维导图
该项目结合了ATM模版和购物车需求,整个思维导图用Python代码实现,使用思维导图可以清晰明了的看清整个框架: 过程中,用到了Python的知识有Python常用模块,Python常用内置包,log ...
- html超文本标记语言的由来
万维网上的一个超媒体文档称为一个页面:page,作为一个组织或者个人在万维网上放置开始点的页面称为主页:homepage或者首页,主页中通常有指向其他相关页面或者其他节点的指针,就是通常所说的超链接, ...
- C# 类型、存储和变量
如果广泛地描述C和C++程序的源代码的特征,可以说C程序是一组函数和数据类型,C++程序是一组函数和类,然而C#程序是一组类型声明. 既然C#程序就是一组类型声明,那么学习C#就是学习如何创建和使用类 ...