【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description
求sigma lcm(x,y),x<=n,y<=m。n,m<=1e7。
Solution
lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做
就是要求sigma d*f(x/d,y/d)
f(x,y)为x和y以内gcd正好为1的对数
F为所有对数,于是有F(x,y)=x*(x+1)/2*y*(y+1)/2
f(x,y)=sigma (1<=i<=x) i*i*mu(i)*F(x/i,y/i)
f用莫比乌斯反演解决,这两个式子都套上分块优化到sqrt,于是总复杂度sqrt*sqrt=n
分块优化具体可以见上一篇blog
Code
一开始全开LL MLE了一发
然后又WA了两发,第一次是有一地方算的时候溢出
一开始为了避免MLE把prime数组/50,但其实只能/20的样子
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=1e7+,mod=; bool flag[maxn];
int prime[maxn],mu[maxn],cnt;
int sum[maxn],s[maxn];
int n,m; void getmu(){
mu[]=;
for(int i=;i<=n;i++){
if(!flag[i]){
mu[i]=-;
prime[++cnt]=i;
}
for(int j=;i*prime[j]<=n&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<=n;i++)
sum[i]=(sum[i-]+(ll)i*i*mu[i]%mod)%mod;
} ll F(int x,int y){
return (ll)((ll)x*(x+)/%mod)*((ll)y*(y+)/%mod)%mod;
} ll f(int x,int y){
ll ret=;
int p;
for(int i=;i<=x;i=p+){
p=min(x/(x/i),y/(y/i));
ret=(ret+(ll)(sum[p]-sum[i-])*F(x/i,y/i))%mod;
}
return ret;
} int main(){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=;i<=n;i++) s[i]=(s[i-]+i)%mod;
getmu(); int pos;
ll ans=;
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+(ll)(s[pos]-s[i-])*f(n/i,m/i))%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}
【莫比乌斯反演】BZOJ2154 Crash的数字表格的更多相关文章
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab
[传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- BZOJ2154: Crash的数字表格
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...
- bzoj千题计划253:bzoj2154: Crash的数字表格
http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
随机推荐
- 兼容 Android 4.4 透明状态栏与导航栏
http://www.apkbus.com/Android-163388-1-1.html?_dsign=73d41229 android 系统自4.2 开始 UI 上就没多大改变,4.4 也只是增加 ...
- MVC-AOP(面向切面编程)思想-Filter之IExceptionFilter-异常处理
HandleErrorAttribute MVC中的基本异常分类: Action异常 T view异常 T, service异常 T, 控制器异常 F(异常get不到), ...
- 有关于二分搜索的常见问题(java实现)
前言: 二分搜索是一个非常常见的面试题目,它具有非常广泛的用途.熟练的掌握二分搜索的基本形式和他的变式是非常重要的.接下来我们将使用java实现一些常见的有关二分搜索的问题. 具体内容: 1.二分搜索 ...
- leetCode刷题(找到最长的连续不重复的字符串长度)
Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...
- CentOS的启动流程
因6和7俩个系列的启动流程有区别,所以我把他们分开来写 linux可看作是内核和根文件系统组成我们把内核单独拿出来总结一下 CentOS6系列启动流程 首先总结一下总体的流程,接下来展开来叙述:POS ...
- 使用pypi-server搭建简单的PyPI源
pypiserver 是一个最基本的PyPI服务器实现, 可以用来上传和维护python包. 本文介绍 pypiserver 在ubuntu上的基本安装, 配置和使用. 1. 基本安装和使用 1.1 ...
- python_函数默认参数设计
>>> def printMax(a,b): if a>b: print(a,'is the max') else: print(b,'is hte max') >> ...
- springboot: thymeleaf 使用详解
springboot:thymeleaf,这篇文章将更加全面详细的介绍thymeleaf的使用.thymeleaf 是新一代的模板引擎,在spring4.0中推荐使用thymeleaf来做前端模版引擎 ...
- Cookie SQL注入
转自http://blog.sina.com.cn/s/blog_6b347b2a0101379o.html cookie注入其原理也和平时的注入一样,只不过说我们是将提交的参数已cookie方式提交 ...
- linux Tcpdump使用方法
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的&qu ...