Description

  求sigma lcm(x,y),x<=n,y<=m。n,m<=1e7。

Solution

  lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做

  就是要求sigma d*f(x/d,y/d)

  f(x,y)为x和y以内gcd正好为1的对数

  F为所有对数,于是有F(x,y)=x*(x+1)/2*y*(y+1)/2

  f(x,y)=sigma (1<=i<=x) i*i*mu(i)*F(x/i,y/i)

  f用莫比乌斯反演解决,这两个式子都套上分块优化到sqrt,于是总复杂度sqrt*sqrt=n

  分块优化具体可以见上一篇blog

Code

  一开始全开LL MLE了一发

  然后又WA了两发,第一次是有一地方算的时候溢出

  一开始为了避免MLE把prime数组/50,但其实只能/20的样子

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=1e7+,mod=; bool flag[maxn];
int prime[maxn],mu[maxn],cnt;
int sum[maxn],s[maxn];
int n,m; void getmu(){
mu[]=;
for(int i=;i<=n;i++){
if(!flag[i]){
mu[i]=-;
prime[++cnt]=i;
}
for(int j=;i*prime[j]<=n&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<=n;i++)
sum[i]=(sum[i-]+(ll)i*i*mu[i]%mod)%mod;
} ll F(int x,int y){
return (ll)((ll)x*(x+)/%mod)*((ll)y*(y+)/%mod)%mod;
} ll f(int x,int y){
ll ret=;
int p;
for(int i=;i<=x;i=p+){
p=min(x/(x/i),y/(y/i));
ret=(ret+(ll)(sum[p]-sum[i-])*F(x/i,y/i))%mod;
}
return ret;
} int main(){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=;i<=n;i++) s[i]=(s[i-]+i)%mod;
getmu(); int pos;
ll ans=;
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+(ll)(s[pos]-s[i-])*f(n/i,m/i))%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}

【莫比乌斯反演】BZOJ2154 Crash的数字表格的更多相关文章

  1. BZOJ2154 Crash的数字表格 【莫比乌斯反演】

    BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...

  2. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  3. BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab

    [传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...

  4. 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab

    t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...

  5. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  6. [bzoj2154]Crash的数字表格(mobius反演)

    题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...

  7. BZOJ2154: Crash的数字表格

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...

  8. bzoj千题计划253:bzoj2154: Crash的数字表格

    http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...

  9. 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    [BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...

随机推荐

  1. linux 常见命令及说明杂记

    systemctl 命令: systemctl 是管制服务的主要工具, 它整合了chkconfig 与 service功能于一体.示例:systemctl is-enabled iptables.se ...

  2. mysql 2003错误

    mysql安装好经常发现无法正常启动碰到最多的是error 2003的错误,以下为解决方法: mysqld -nt -remove mysqld -nt -install 重新启动mysql net ...

  3. List集合中元素排序

    应用场景: 在开发中经常遇到要对List<Object>集合进行排序,并且是根据集合中的对象的某个属性来进行排序    --------以下就此做出的解决方案 public static ...

  4. Read程序员的困境有感

    看完这篇文章,我真的害怕了,码农遍地都是,我就是,改变从今天做起,不走码农生活 首先, 打造你自己的私人项目.你需要不断地打磨自己的技艺.如果工作本身并不能帮助你做到这一点,就捡起那些你感兴趣的问题, ...

  5. jvm栈-运行控制,jvm-堆运行存储共享单元

     JVM-栈 2012-09-17 15:43:53 分类: Java 原文转自:http://www.blogjava.net/nkjava/archive/2012/03/15/371971.ht ...

  6. Java编程语言下Selenium 利用Robot自己编写截屏方法

    import java.awt.Robot; import java.awt.event.KeyEvent; import java.util.concurrent.TimeUnit; import ...

  7. SpringBoot整合ElasticSearch实现多版本的兼容

    前言 在上一篇学习SpringBoot中,整合了Mybatis.Druid和PageHelper并实现了多数据源的操作.本篇主要是介绍和使用目前最火的搜索引擎ElastiSearch,并和Spring ...

  8. POSTGRESQL 并发控制

    http://meidayhxp.blog.163.com/blog/static/117608156201210243837491/ 这个内容是官方Doc中的一章,具体是那一版的,还未确认. 第九章 ...

  9. 修改input获取焦点背景黄色

    input:-webkit-autofill { -webkit-box-shadow: 0 0 0px 1000px white inset !important; }

  10. 完美解决IE渲染方式进入兼容模式问题

    <meta http-equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE"> &l ...