hihocoder #1142 : 三分·三分求极值
描述
这一次我们就简单一点了,题目在此:

在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d。
输入
第1行:5个整数a,b,c,x,y。前三个数构成抛物线的参数,后两个数x,y表示P点坐标。-200≤a,b,c,x,y≤200
输出
第1行:1个实数d,保留3位小数(四舍五入)
题解:
三分法板子题,我们可以明显看出P(x,y)到抛物线距离是个凸函数,所以存在极值
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
using namespace std;
const double eps=1e-;
double a,b,c,x,y;
double f(double i){
double j=a*i*i+b*i+c;
return sqrt((x-i)*(x-i)+(y-j)*(y-j));
}
void work()
{
double l=-10000.0,r=10000.0,lmid,rmid;
while(l<r-eps){
lmid=l+(r-l)/;rmid=r-(r-l)/;
if(f(lmid)<f(rmid))r=rmid;
else l=lmid;
}
printf("%.3lf\n",f(l));
} int main()
{
while(cin>>a>>b>>c>>x>>y)
work();
return ;
}
hihocoder #1142 : 三分·三分求极值的更多相关文章
- HihoCoder - 1142 ,三分入门
先来说说三分的思想: 从三分法的名字中我们可以猜到,三分法是对于需要逼近的区间做三等分: 我们发现lm这个点比rm要低,那么我们要找的最小点一定在[left,rm]之间.如果最低点在[rm,right ...
- 【HIHOCODER 1142】 三分·三分求极值
描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物 ...
- hihocoder 1142 三分求极值【三分算法 模板应用】
#1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一 ...
- Hihocoder #1142 : 三分·三分求极值
1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个 ...
- hihocoder 1142 三分·三分求极值(三分)
题目1 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点 ...
- HLJU 1221: 高考签到题 (三分求极值)
1221: 高考签到题 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 9 Solved: 4 [Submit][id=1221">St ...
- hdu 4717(三分求极值)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 思路:三分时间求极小值. #include <iostream> #include ...
- hihocoder-1142-三分求极值
Hihocoder-1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax ...
- AtCoder Beginner Contest 130 F Minimum Bounding Box 三分法求极值(WA)
题意:给n个点的起始坐标以及他们的行走方向,每一单位时间每个点往它的方向移动一单位.问最小能包围所有点的矩形. 解法:看到题目求极值,想了想好像可以用三分法求极值,虽然我也不能证明面积是个单峰函数. ...
随机推荐
- python 异步协程
"""A very simple co-routine scheduler. Note: this is written to favour simple code ov ...
- TOTP算法 基于时间的一次性密码
/** Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights rese ...
- Android webview Mixed Content无法显示图片解决
转自:http://blog.csdn.net/crazy_zihao/article/details/51557425 前言 在使用WebView加载https资源文件时,如果认证证书不被Andro ...
- 微信qq,新浪等第三方授权登录的理解
偶们常说的第三方是指的微信,qq,新浪这些第三方,因为现在基本每个人都有qq或者微信,那么我们就可以通过这些第三方进行登录.而这些网站比如慕课网是通过第三方获取用户的基本信息 它会有个勾选按钮,提示是 ...
- 我的前端故事----来聊聊react-native应用的健康监控
监控什么 今天我们来聊聊如何监控你的应用程序,这里的监控说的不是让我们去监控用户,而是监控应用的健康状态,什么是健康状态呢?对于后端的同学来说,在微服务的架构下,每个子服务是否正常工作.返回的结果是否 ...
- PHP类的自动加载
spl_autoload_register(function ($className) { require str_replace('\\', '/', $className '.php'); }) ...
- 使用 HttpClient 请求 Web Api
1.获取 post 请求 body 内容 [HttpPost] public string GetId() { //如果方法参数里面有 [FromBody],则需要重新调整内容指针,再进行读取. // ...
- 从一个事件绑定说起 - DOM
事件绑定的方式 给 DOM 元素绑定事件分为两大类:在 html 中直接绑定 和 在 JavaScript 中绑定. Bind in HTML 在 HTML 中绑定事件叫做内联绑定事件,HTML 的元 ...
- mysql中text数据类型
有个小问题记录下: 需要从第三方api接口获取数据,返回的数据的长度不定,设计表的时候设计成了varchar(256):结果存数据的时候提示表字段长度不够. 一直从300改到500,600,700都一 ...
- Java:import com.sun.awt.AWTUtilities;报错
参考网址:http://stackoverflow.com/questions/860187/access-restriction-on-class-due-to-restriction-on-req ...