1578. 次小生成树初级练习题

☆   输入文件:mst2.in   输出文件:mst2.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

求严格次小生成树

【输入格式】

第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。

【输出格式】

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

【样例输入】

5 6

1 2 1

1 3 2

2 4 3

3 5 4

3 4 3

4 5 6

【样例输出】

11

【提示】

数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。

【来源】

bzoj。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct nond{
int x,y,z;
}edge[];
int T,N,M,x,y,z,fa[],num,ans[];
int tot,bns,k,answer=0x7f7f7f7f;
int cmp(nond aa,nond bb){
return aa.z<bb.z;
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int main(){
freopen("mst2.in","r",stdin);
freopen("mst2.out","w",stdout);
cin>>N>>M;
for(int i=;i<=M;i++){
cin>>x>>y>>z;
edge[i].x=x;
edge[i].y=y;
edge[i].z=z;
}
sort(edge+,edge++M,cmp);
for(int i=;i<=N;i++) fa[i]=i;
for(int i=;i<=M;i++){
int dx=find(edge[i].x);
int dy=find(edge[i].y);
if(dx!=dy){
fa[dx]=dy;
tot++;
ans[tot]=i;
bns+=edge[i].z;
}
if(tot==N-) break;
}
for(int i=;i<=tot;i++){
k=;num=;
for(int j=;j<=N;j++) fa[j]=j;
sort(edge+,edge++M,cmp);
for(int j=;j<=M;j++){
if(j==ans[i]) continue;
int dx=find(edge[j].x);
int dy=find(edge[j].y);
if(dx!=dy){
fa[dx]=dy;
num++;
k+=edge[j].z;
}
if(num==N-) break;
}
if(num==N-&&k!=bns) answer=min(k,answer);
}
cout<<answer;
}

cogs P1578【模板】 次小生成树初级练习题的更多相关文章

  1. COGS——T 1578. 次小生成树初级练习题

    http://www.cogs.pro/cogs/problem/problem.php?pid=1578 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 ...

  2. cogs——1578. 次小生成树初级练习题

    1578. 次小生成树初级练习题 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式 ...

  3. COGS 1578. 次小生成树初级练习题

    ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式] 第一行包含两个整数N 和M,表 ...

  4. 洛谷.4180.[模板]次小生成树Tree(Kruskal LCA 倍增)

    题目链接 构建完MST后,枚举非树边(u,v,w),在树上u->v的路径中找一条权值最大的边(权为maxn),替换掉它 这样在 w=maxn 时显然不能满足严格次小.但是这个w可以替换掉树上严格 ...

  5. P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...

  6. 【洛谷】4180:【模板】严格次小生成树[BJWC2010]【链剖】【线段树维护最大、严格次大值】

    P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说, ...

  7. POJ -1679(次小生成树)模板

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:34617   Accepted: 12637 D ...

  8. 「LuoguP4180」 【模板】严格次小生成树[BJWC2010](倍增 LCA Kruscal

    题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得 ...

  9. 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】

    严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...

随机推荐

  1. js循环匹配组合成新对象或js循环组合新数据

    var Arry=[ {name: "vehicleTravelLicenseCopyBack", id: "a1"}, {name: "vehicl ...

  2. mac打包python3程序

    1. 下载安装py2app pip3 install py2app 2. 创建setup.py文件 py2applet --make-setup XXX.py 3. 发布应用 python3 setu ...

  3. 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)

    这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...

  4. 在启动php时,无法启动此程序,由于计算机中丢失MSVCR110.dll的解决方法

    在启动php时,运行RunHiddenconsole.exe php-cgi.exe -b 127.0.0.1:9000 -c时,出现错误:无法启动此程序,由于计算机中丢失MSVCR110.dll 方 ...

  5. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  6. android图片资源的适配问题

    原文: http://hi.baidu.com/weiyousheng/blog/item/c622d701b9dec6c2277fb5cc.html 在之前的版本中,只有一个drawable,而2. ...

  7. javaScript 预编译过程浅尝

    javaScript 预编译过程 1.创建AO对象(Activation Object) AO{ a: } 2.找形参和变量声明,将变量和形参作为AO属性名,值为undefined AO{ a:und ...

  8. Hexo High一下以及压缩排版问题

    背景介绍 集成Hight一下以及Gulp-html压缩之后出现的问题: High一下功能多次点击,会创建多个Audio对象,导致同时播放多次音乐,重音.解决办法:判断是否添加Audio对象,如果存在则 ...

  9. poj2486--Apple Tree(树状dp)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7789   Accepted: 2606 Descri ...

  10. DataTable填充实体类返回泛型集合

    昨天找坤哥看到我的一段代码.例如以下: 略微解释下,这段代码时D层查询结束后,将datatable查询到的结果赋值给实体对象的属性,然后返回实体的过程.坤哥看了之后问我.假设实体有500多个属性.难道 ...