BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab
【传送门:BZOJ2154&BZOJ2693】
简要题意:
给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$
题解:
莫比乌斯反演(因为BZOJ2693是多组数据,数据强一点,所以代码用BZOJ2693的)
设n<m,原式等于$\sum_{i=1}^{n}\sum_{j=1}^{m}i*j/gcd(i,j)$
然后枚举d值作为i和j的gcd,得到$$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i*j}{d}[gcd(i,j)==d]$$
因为gcd(i,j)==d,所以gcd(i/d,j/d)==1,得到$$\sum_{d=1}^{n}d*\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}i*j[gcd(i,j)==1]$$
因为莫反的性质:$\sum_{d|x}\mu(d)=[x==1]$,所以转化为$$\sum_{d=1}^{n}d*\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}i*j*\sum_{t|gcd(i,j)}\mu(t)$$
交换和式得到$$\sum_{d=1}^{n} d* \sum_{t=1}^{\frac{n}{d}} \mu(t) * \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{m}{d}} i*j[gcd(i,j)==t]$$
$$\sum_{d=1}^{n}d*\sum_{t=1}^{\frac{n}{d}}t^{2}*\mu(t)*\sum_{i=1}^{\frac{n}{dt}}\sum_{j=1}^{\frac{m}{dt}}i*j$$
设$T=dt$,$S(x)=\sum_{i=1}^{x}i$,得到$$\sum_{d=1}^{n}\sum_{t=1}^{\frac{n}{d}}T*t*\mu(t)*S(\frac{n}{T})*S(\frac{m}{T})$$
将$S(\frac{n}{T})*S(\frac{m}{T})$提前,得到$$\sum_{T=1}^{n}T*S(\frac{n}{T})*S(\frac{m}{T})\sum_{d|T}d*\mu(d)$$
因为$S(\frac{n}{T})*S(\frac{m}{T})$可以前缀和预处理,显然我们只要将$\sum_{d|T}d*\mu(d)$快速求出就可以了
设$F(T)=\sum_{d|T}d*\mu(d)$,显然是一个积性函数,在线性筛的时候求就行了
然后将$T*F(T)$求前缀和,然后整除分块加速就能过了
参考代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
int prime[],v[];
LL f[],sum[];
LL Mod=1e8+;
void pre(int n)
{
f[]=;
int tot=;
for(int i=;i<=n;i++)
{
if(v[i]==)
{
v[i]=i;
prime[++tot]=i;
f[i]=(-i+Mod)%Mod;
}
for(int j=;j<=tot;j++)
{
if(prime[j]>v[i]||prime[j]>n/i) break;
v[i*prime[j]]=prime[j];
if(i%prime[j]==){f[i*prime[j]]=f[i]%Mod;break;}
else f[i*prime[j]]=f[i]*f[prime[j]]%Mod;
}
}
for(int i=;i<=n;i++) f[i]=(f[i]*LL(i)%Mod+f[i-])%Mod;
for(int i=;i<=n;i++) sum[i]=(sum[i-]+LL(i))%Mod;
}
int main()
{
pre();
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
LL ans=;
for(int i=,j;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=(ans+(f[j]-f[i-]+Mod)%Mod*sum[n/i]%Mod*sum[m/i]%Mod)%Mod;
}
printf("%lld\n",ans);
}
return ;
}
BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab的更多相关文章
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- 题解-bzoj2154Crash的数字表格 & bzoj2693 jzptab
Problem bzoj2818-单组询问-无权限 bzoj2693-多组询问-需权限 洛谷1829-单组询问-无权限 \(T\)组询问(如果有),给定 \(n,m\),求 \[\sum_{i=1}^ ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- BZOJ2154: Crash的数字表格
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...
- 【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...
- bzoj千题计划253:bzoj2154: Crash的数字表格
http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
随机推荐
- openfire 安装部署
1. openfire安装和配置 本文介绍openfire 在linux上安装部署过程 linux上有两种安装方式,一个是RPM包方式.还有一个是tar.gz压缩包方式, 官方推荐採用RPM包方式,会 ...
- 使用Handler在子线程中更新UI
Android规定仅仅能在主线程中更新UI.假设在子线程中更新UI 的话会提演示样例如以下错误:Only the original thread that created a view hierach ...
- UVA 10593 Kites DP
The season of flying kites is well ahead. So what? Let us make an inventory for kites. We are givena ...
- 这里是指推送通知跟NSNotification有区别:
1.NSNotification是系统内部发出通知,一般用于内部事件的监听,或者状态的改变等等,是不可见的2.本地通知与远程通知是可见的,主要用于告知用户或者发送一些App的内容更新,推送一些相关的消 ...
- Docker运行程序报错 WARNING: IPv4 forwarding is disabled. Networking will not work
WARNING: IPv4 forwarding is disabled. Networking will not work. 第一步:vi /usr/lib/sysctl.d/00-system ...
- CentOS 7 NAT模式上网配置
一 VMware 配置 在“编辑”选项卡中,选择“虚拟网络编辑器”,如下图: 选择VMnet8,修改子网IP与子网掩码,注意不要给“使用本地DHCP服务将IP地址分配给虚拟机”选项打勾,如下图: 点击 ...
- CSS3中的2D和3D转换知识介绍
一 2D转换 转换是CSS3中具有颠覆性的特征之一,可以实现元素的位移.旋转.变形.缩放,甚至支持矩阵方式,配合即将学习的过渡和动画知识,可以取代大量之前只能靠Flash才可以实现的效果. 1.移动 ...
- Oracle PL/SQL开发基础(第三十三弹:EXCEPTION_INIT)
如果有一些异常并没有异常名称,比如一些ORA-开头的异常并没有一个友好的预定义的异常定义,此时在WHEN子句中无法使用具体的异常名称,必须要使用OTHERS异常处理器进行捕捉.通过EXCEPTION_ ...
- MAC 下的pycharm部分使用方法
1.在创建之初,可以选择自己想要使用的python版本. 如果之后想要更换Python版本,可以通过~~~更换选择Python版本. 2.创建.py文件,点击文件名,出现如下界面: 点击new--py ...
- 用于构建 RESTful Web 服务的多层架构
作者:Bruce Sun, Java 架构师, IBM 出处:http://www.ibm.com/developerworks/cn/web/wa-aj-multitier/ 用于构建 RESTfu ...