http://www.lintcode.com/zh-cn/problem/topological-sorting/#

给定一个有向图,图节点的拓扑排序被定义为:

  • 对于每条有向边A--> B,则A必须排在B之前
  • 拓扑排序的第一个节点可以是任何在图中没有其他节点指向它的节点

找到给定图的任一拓扑排序

solution

Topological Sorting

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0″. There can be more than one topological sorting for a graph. For example, another topological sorting of the following graph is “4 5 2 3 1 0″. The first vertex in topological sorting is always a vertex with in-degree as 0 (a vertex with no in-coming edges).

Topological Sorting vs Depth First Traversal (DFS):
In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In topological sorting, we need to print a vertex before its adjacent vertices. For example, in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the vertex ‘4’ should also be printed before vertex ‘0’. So Topological sorting is different from DFS. For example, a DFS of the above graph is “5 2 3 1 0 4″, but it is not a topological sorting

Algorithm to find Topological Sorting:
We recommend to first see implementation of DFS here. We can modify DFSto find Topological Sorting of a graph. In DFS, we start from a vertex, we first print it and then recursively call DFS for its adjacent vertices. In topological sorting, we use a temporary stack. We don’t print the vertex immediately, we first recursively call topological sorting for all its adjacent vertices, then push it to a stack. Finally, print contents of stack. Note that a vertex is pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so on) are already in stack.

引用自 http://www.geeksforgeeks.org/topological-sorting/

如果仅仅只是对DAG进行DFS,那么针对某一起始点(例如上图中的5)开始的DFS确实可以满足Topological sorting,但是当对该点DFS范围以外的其他点(例如上图中的4)再进行DFS时,很可能会出现不满足Topological sorting的情况。例如上图中,在4指向1的清凉下。那如何解决?

利用栈后进先出的性质,我们可以依次递归的将每一个vertex的adjacent vertices先入栈,vertex最后入栈,这样vertices的出栈顺序即满足Topological sorting,代码如下:

// Author: Jian-xin Zhou

/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector<DirectedGraphNode *> neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*> graph) {
// write your code here
unordered_set<DirectedGraphNode*> unique;
stack<DirectedGraphNode*> st;
topologicalSort(graph, unique, st); vector<DirectedGraphNode*> ret;
while (!st.empty()) {
ret.push_back(st.top());
st.pop();
} return ret;
} private:
void topologicalSortUtil(DirectedGraphNode *node,
unordered_set<DirectedGraphNode*> &unique,
stack<DirectedGraphNode*> &st) {
// 处理 neighbors
for (const auto &nodePointer : node->neighbors) {
if (unique.count(nodePointer) == 0) {
unique.insert(nodePointer);
topologicalSortUtil(nodePointer, unique, st);
}
} // 处理完 neighbors ,自身入栈
st.push(node);
} void topologicalSort(vector<DirectedGraphNode*> graph,
unordered_set<DirectedGraphNode*> &unique,
stack<DirectedGraphNode*> &st) {
for (const auto &node : graph) {
if (unique.count(node) == 0) {
unique.insert(node);
topologicalSortUtil(node, unique, st);
}
}
}
};

[LintCode] 拓扑排序的更多相关文章

  1. BFS (1)算法模板 看是否需要分层 (2)拓扑排序——检测编译时的循环依赖 制定有依赖关系的任务的执行顺序 djkstra无非是将bfs模板中的deque修改为heapq

    BFS模板,记住这5个: (1)针对树的BFS 1.1 无需分层遍历 from collections import deque def levelOrderTree(root): if not ro ...

  2. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  3. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  4. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  5. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  6. 图——拓扑排序(uva10305)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  7. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  8. poj 3687(拓扑排序)

    http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...

  9. 拓扑排序 - 并查集 - Rank of Tetris

    Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...

随机推荐

  1. hook 9大类

    HOOK技术主要分为两大类,一是内核层HOOK,一是用户层HOOK. 用户层HOOK也就是在ring3环境下hook kenerl32.dll.User3.dll.Gui32.dll.Advapi.d ...

  2. Linux下文件的三种时间标记(atime ctime mtime)

    在windows下,一个文件有:创建时间.修改时间.访问时间. 在Linux下,一个文件有:状态改动时间.修改时间.访问时间. 1)查看文件(或文件夹)的三种时间标记 (stat 命令) Access ...

  3. 爬虫初窥day4:requests

      Requests 是使用 Apache2 Licensed 许可证的 HTTP 库.用 Python 编写,真正的为人类着想. Python 标准库中的 urllib2 模块提供了你所需要的大多数 ...

  4. 摹客iDoc201901-2新功能点评

    2019才刚刚开始,摹客团队就已经蓄势待发.马不停蹄地给大家带来了又一份惊喜.实话说,这次小摹都忍不住要点个赞!下面就赶紧带大家看看iDoc又更新了哪些新功能: 1.标注和评论融合.协作更高效 iDo ...

  5. .net中反射技术的应用

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Ref ...

  6. 【UI测试】--独特性

  7. PHP连接SQLServer2012两例

    首先放上 PHP连接SQLServer的驱动下载地址 http://php.net/manual/zh/ref.pdo-sqlsrv.php 另外PHP for IIS管理工具 大家可以自己搜索一下 ...

  8. OneZero_Aphla发布总结以及自己的体会

    Aphla发布正式结束了.清明时节,总要祭奠点什么. 以下是这一周的燃尽图. 可以发现,并没有燃尽.所以OneZero的Aphla发布失败了. 失败原因有至少以下三点: 1.组长分配任务存在隐患,高风 ...

  9. mybatis @SelectKey加于不加的区别

    正常情况下,我们设置表的主键自增,然后: @Insert("insert into miaosha_order (user_id, goods_id, order_id)values(#{u ...

  10. Mysql #1406 Data too long 错误

    Mysql #1406 Data too long 错误 http://blog.sina.com.cn/s/blog_68004f680100kgfh.html B. Mysql配置文件:   “在 ...