链式栈:就是一种操作受限的单向链表,对单向链表还不了解的可先看一下之前的一篇关于单向链表的随笔,链表(单向链表的建立、删除、插入、打印),理解了单向链表后再来看链式栈就比较轻松了

链式栈的操作一般含有:出栈、入栈、栈的初始化、判断栈是否为空、清空栈,下面先上声明部分代码

 #include <stdio.h>
#include <stdlib.h>
#define Empty 0 /* 栈空 */
#define Avail 1 /* 栈可用 */ typedef struct SNode
{
int data;
struct SNode *next;
}StackNode;
typedef struct LStack
{
StackNode *top; /* 栈顶指针 */
StackNode *bottom; /* 栈底指针 */
int height; /* 链式栈高度 */
}LinkStack; LinkStack InitStack (LinkStack pStack); /* 栈顶指针、栈底指针、栈高度初始化*/
LinkStack Push (LinkStack pStack); /* 入栈 */
LinkStack Pop (LinkStack pStack); /* 出栈 */
int StackEmpty (LinkStack pStack); /* 判断栈是否为空 */
LinkStack DeletStack (LinkStack pStack);/* 清空栈 */
void DisplyStack (LinkStack pStack); /* 遍历栈----自顶至底*/

一、节点的声明

 typedef struct SNode
{
int data;
struct SNode *next;
}StackNode;

链式栈节点的声明与单向链表的声明相同,都是由数据域和指针域组成,这里不再赘述

二、栈顶、栈底、栈高度的声明

 typedef struct LStack
{
StackNode *top; /* 栈顶指针 */
StackNode *bottom; /* 栈底指针 */
int height; /* 链式栈高度 */
}LinkStack;

三、函数声明

 LinkStack InitStack (LinkStack pStack);    /* 栈顶指针、栈底指针、栈高度初始化*/
LinkStack Push (LinkStack pStack); /* 入栈 */
LinkStack Pop (LinkStack pStack); /* 出栈 */
int StackEmpty (LinkStack pStack); /* 判断栈是否为空 */
LinkStack DeletStack (LinkStack pStack);/* 清空栈 */
void DisplyStack (LinkStack pStack); /* 遍历栈----自顶至底*/

链式栈和单向链表的区别

上面已经提到的是链式栈是一种操作受限的单向链表(废话··),先来回顾一下单向链表的建立过程(不清楚单向链表的可以先之前的另一篇随笔链表(单向链表的建立、删除、插入、打印)),单向链表在添加新的节点的时候是将原链表最后一个节点的

指针域指向新建的节点,然后新建节点指针域置为NULL作为链表的最后一个节点,而链式栈在添加新的节点的时候操作就不太一样了,先来分析下栈的操作,栈只是栈顶来做插入和删除操作,那么栈顶放在链表的头部还是尾部呢?由于单向链表有头指针

而栈顶指针也是必须的,那么就把栈顶指针当作头指针来使用,比较好的办法是把栈顶放到单链表的头部。另外栈顶在头部了,那么单链表的头结点也就失去了意义,通常对于链式栈来说,是不需要头结点的,现在来说链式栈添加新节点的操作

链式栈:新一个节点->将新建节点的指针域指向原栈顶节点->将栈顶指针移动到新建节点

单向链表:新建一个节点->将原链表最后的一个节点的指针域指向新建节点->新建节点的指针域置为NULL作为新链表的最后一个节点

为了方便读者更加直观了解这个过程下面上图:

链式栈操作部分

一、入栈

 /* Function: 入栈 */
LinkStack Push (LinkStack pStack)
{
int data;
StackNode *temp; if ((temp = (StackNode *)malloc(sizeof(StackNode))) == NULL)
{
printf("内存空间不足\n");
return pStack;
}
if (StackEmpty(pStack) == Empty) /* 如果栈为空 */
{
pStack.top = pStack.bottom = temp; /* 栈顶、栈底指针都指向新建节点 */
temp->next = NULL; /* 节点指针域为空 */
printf("Please input data");
scanf("%d", &data);
pStack.top->data = data;
pStack.height++; return pStack;
}
else /* 栈不为空 */
{
temp->next = pStack.top;/* 新建节点指向原来的栈顶 */
pStack.top = temp; /* 栈顶指针指向新建节点 */
printf("Please input data");
scanf("%d", &data);
pStack.top->data = data;
pStack.height++; return pStack;
}
}

二、出栈

 /* Function: 出栈 */
LinkStack Pop (LinkStack pStack)
{
StackNode *Second; if (StackEmpty(pStack) == Empty) /* 判断栈是否为空 */
{
printf("栈为空,无法出栈\n");
return pStack;
}
if (pStack.top == pStack.bottom) /* 如果出栈的元素为最后一个元素 */
{
printf("出栈元素为%d\n", pStack.top->data);
free(pStack.top);
pStack.top = pStack.bottom = NULL; /* 栈顶、栈底都指针都置为空 */
pStack.height--; return pStack;
}
printf("出栈元素为%d\n", pStack.top->data);
Second = pStack.top->next; /* 指向栈顶的前一个元素*/ free(pStack.top); /* 释放栈顶节点 */
pStack.top = Second;/* 将头指针移动到新的栈顶节点 */
pStack.height--; return pStack;
}

出栈时需要判断三种情况,第一种情况:栈为空、第二种情况:栈中只有一个元素、第三种情况:栈中元素大于等于两个

三、判断栈是否为空

 /* Function: 判断栈是否为空 */
int StackEmpty (LinkStack pStack)
{
if (pStack.top == NULL && pStack.bottom == NULL)
{
return Empty;
}
else
{
return Avail;
}
}

四、遍历栈

 /* Function: 遍历栈 自顶到底*/
void DisplyStack (LinkStack pStack)
{
if (StackEmpty(pStack) == Empty)
{
printf("栈为空,无法遍历\n");
return ;
}
printf("栈中元素[");
while (pStack.top != NULL)
{
printf("%d->", pStack.top->data);
pStack.top = pStack.top->next;
}
printf("]\n");
}

五、清空栈

 /* Function: 清空栈 */
LinkStack DeletStack (LinkStack pStack)
{
StackNode *del; while (pStack.top != NULL)
{
del = pStack.top->next; /* 栈顶节点的前一个节点 */
free(pStack.top); /* 释放节点 */
pStack.top = del; /* 栈顶指针移动到新栈顶 */
} return pStack;
}

六、初始化栈顶、栈底指针和栈高度

 /* Function: 初始化栈顶、栈底、栈高度*/
LinkStack InitStack (LinkStack pStack)
{
pStack.top = pStack.bottom = NULL;
pStack.height = ; return pStack;
}

链式栈实现完整代码 

 #include <stdio.h>
#include <stdlib.h>
#define Empty 0 /* 栈空 */
#define Avail 1 /* 栈可用 */ typedef struct SNode
{
int data;
struct SNode *next;
}StackNode;
typedef struct LStack
{
StackNode *top; /* 栈顶指针 */
StackNode *bottom; /* 栈底指针 */
int height; /* 链式栈高度 */
}LinkStack; LinkStack InitStack (LinkStack pStack); /* 栈顶指针、栈底指针、栈高度初始化*/
LinkStack Push (LinkStack pStack); /* 入栈 */
LinkStack Pop (LinkStack pStack); /* 出栈 */
int StackEmpty (LinkStack pStack); /* 判断栈是否为空 */
LinkStack DeletStack (LinkStack pStack);/* 清空栈 */
void DisplyStack (LinkStack pStack); /* 遍历栈----自顶至底*/ int main()
{
LinkStack p;
char ch; p.height = ; /* 栈高度初始化为零 */
p = InitStack (p); /* 栈初始化 */
printf("Do you want to push stack(Y/N)?");
scanf(" %c", &ch);
while (ch == 'Y' || ch == 'y')
{
p = Push(p); /* 入栈 */
DisplyStack(p); /* 遍历栈 */
printf("Do you want to push stack(Y/N)?");
scanf(" %c", &ch);
}
printf("Do you want to pop stack(Y/N)?");
scanf(" %c", &ch);
while (ch == 'Y' || ch == 'y')
{
p = Pop(p); /* 出栈 */
DisplyStack(p); /* 遍历栈 */
printf("Do you want to pop stack(Y/N)?");
scanf(" %c", &ch);
} return ;
}
/* Function: 初始化栈顶、栈底、栈高度*/
LinkStack InitStack (LinkStack pStack)
{
pStack.top = pStack.bottom = NULL;
pStack.height = ; return pStack;
} /* Function: 判断栈是否为空 */
int StackEmpty (LinkStack pStack)
{
if (pStack.top == NULL && pStack.bottom == NULL)
{
return Empty;
}
else
{
return Avail;
}
} /* Function: 入栈 */
LinkStack Push (LinkStack pStack)
{
int data;
StackNode *temp; if ((temp = (StackNode *)malloc(sizeof(StackNode))) == NULL)
{
printf("内存空间不足\n");
return pStack;
}
if (StackEmpty(pStack) == Empty) /* 如果栈为空 */
{
pStack.top = pStack.bottom = temp; /* 栈顶、栈底指针都指向新建节点 */
temp->next = NULL; /* 节点指针域为空 */
printf("Please input data");
scanf("%d", &data);
pStack.top->data = data;
pStack.height++; return pStack;
}
else /* 栈不为空 */
{
temp->next = pStack.top;/* 新建节点指向原来的栈顶 */
pStack.top = temp; /* 栈顶指针指向新建节点 */
printf("Please input data");
scanf("%d", &data);
pStack.top->data = data;
pStack.height++; return pStack;
}
} /* Function: 出栈 */
LinkStack Pop (LinkStack pStack)
{
StackNode *Second; if (StackEmpty(pStack) == Empty) /* 判断栈是否为空 */
{
printf("栈为空,无法出栈\n");
return pStack;
}
if (pStack.top == pStack.bottom) /* 如果出栈的元素为最后一个元素 */
{
printf("出栈元素为%d\n", pStack.top->data);
free(pStack.top);
pStack.top = pStack.bottom = NULL; /* 栈顶、栈底都指针都置为空 */
pStack.height--; return pStack;
}
printf("出栈元素为%d\n", pStack.top->data);
Second = pStack.top->next; /* 指向栈顶的前一个元素*/ free(pStack.top); /* 释放栈顶节点 */
pStack.top = Second;/* 将头指针移动到新的栈顶节点 */
pStack.height--; return pStack;
} /* Function: 遍历栈 自顶到底*/
void DisplyStack (LinkStack pStack)
{
if (StackEmpty(pStack) == Empty)
{
printf("栈为空,无法遍历\n");
return ;
}
printf("栈中元素[");
while (pStack.top != NULL)
{
printf("%d->", pStack.top->data);
pStack.top = pStack.top->next;
}
printf("]\n");
} /* Function: 清空栈 */
LinkStack DeletStack (LinkStack pStack)
{
StackNode *del; while (pStack.top != NULL)
{
del = pStack.top->next; /* 栈顶节点的前一个节点 */
free(pStack.top); /* 释放节点 */
pStack.top = del; /* 栈顶指针移动到新栈顶 */
} return pStack;
}

 

栈(链式栈)----C语言的更多相关文章

  1. 大数据全栈式开发语言 – Python

    前段时间,ThoughtWorks在深圳举办一次社区活动上,有一个演讲主题叫做“Fullstack JavaScript”,是关于用JavaScript进行前端.服务器端,甚至数据库(MongoDB) ...

  2. 为什么说Python 是大数据全栈式开发语言

    欢迎大家访问我的个人网站<刘江的博客和教程>:www.liujiangblog.com 主要分享Python 及Django教程以及相关的博客 交流QQ群:453131687 原文链接 h ...

  3. 数据结构——栈(C语言实现)

    #include <stdio.h> #include <stdlib.h> #include<string.h> #include<malloc.h> ...

  4. 栈的C语言实现

    在C++中,可以直接使用std::stack C语言实现如下: stack.c /** * @file stack.c * @brief 栈,顺序存储. * * * */ #include <s ...

  5. 【数据结构】之栈(Java语言描述)

    在前面的[这篇文章]中,我简单介绍了栈这种数据结构的操作功能,并使用C语言对其进行了代码的编写. Java的JDK中默认为我们提供了栈这种数据结构的API—— Stack . Java中的Stack类 ...

  6. 【数据结构】之栈(C语言描述)

    栈(Stack)是编程中最常用的数据结构之一. 栈的特点是“后进先出”,就像堆积木一样,堆的时候要一块一块堆到最上面,拆的时候需要从最上面一块一块往下拆.栈的原理也一样,只不过它的操作不叫堆和拆,而是 ...

  7. 链式栈-C语言实现

    相对于顺序栈的空间有限,链式栈的操作则更加灵活 #include<stdio.h> #include<malloc.h> typedef int SElemType; //元素 ...

  8. 天勤考研数据结构笔记—栈的C语言实现

    栈的基本概念 栈的定义:栈是一种只能在一端进行插入或删除操作的线性表.其中允许进行插入或删除的一端称为栈顶(top).栈顶是由一个称为栈顶指针的位置指示器(其实就是一个变量,对于顺序栈,就是数组索引, ...

  9. 栈在go语言中实现,及解决388.文件的最长绝对路径的思路

    今天在LeetCode刷每日一题,遇到了388. 文件的最长绝对路径的思路,这道题让我想到了系统的目录是栈结构,果然在题解中找到了栈的解法(暴力半天没出来,跑去看题解了QWQ). 所以我就捎带复习了一 ...

  10. 链栈的C语言实现

    /* 功能:栈的链表实现 Author:lxm Date: 20160511 */ #include <stdio.h> #include <stdlib.h> #define ...

随机推荐

  1. 【WebService】WebService基础知识(一)

    WebService是什么? 1. 基于Web的服务:服务器端整出一些资源让客户端应用访问(获取数据) 2. 一个跨语言.跨平台的规范(抽象) 3. 多个跨平台.跨语言的应用间通信整合的方案(实际) ...

  2. NOIP模拟测试1(2017081501)

    好,今天是cgg第一次举行模拟测试,希望各位支持. 时间限制:2小时 题目链接: 题目一:水得都没名字了 题目二:车站 题目三:选数 不要觉得2小时太少,我的题目很良心,都很简单. 答案可以在模拟测试 ...

  3. Spring框架简介

    1.发明者:Rod Johnson 2.轮子理论推崇者: 2.1 轮子理论:不用重复发明轮子 2.2 IT行业:直接只用写好的代码 3.Spring框架宗旨:不重新发明技术,让原有技术使用起来更加方便 ...

  4. 783. Minimum Distance Between BST Node

    方法一,非递归方法,中序遍历 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *l ...

  5. 2018.11.05 NOIP模拟 列队(差分约束)

    传送门 直接建边跑差分约束就可以了. 代码

  6. Win7 VS2013环境cuda_7.5.18的一些坑

    thrust库的sort算法,在x86平台使用就崩溃,x64就没问题,搜了下好像是很早的版本,4开始就有这样的问题了,原因不明. http://stackoverflow.com/questions/ ...

  7. Mybatis在oracle数据库中插入数据后返回自增值ID

    1.将id设置成自增序列 CREATE OR REPLACE TRIGGER "DATALIB"."TRIG_USER_ADD" BEFORE INSERT O ...

  8. springboot实现xml传参和返回值

    1.新建maven工程xml-bean-convert pom.xml如下 <?xml version="1.0" encoding="UTF-8"?&g ...

  9. dj 模型层orm-1

    ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的 ...

  10. python的6种基本数据类型--集合

    特征 1.确定性(元素必须可hash) 2.互异性(去重) 3.无序性(集合中的元素没有顺序,先后之分) >>> s = {1,1,1,2,2,3,4,5,6,7} # 创建 > ...