Tensorflow图像处理主要包括:调整尺寸,图像翻转,调整色彩,处理标注框。

代码如下:

#coding=utf-8
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np image_raw_data = tf.gfile.FastGFile('cat.jpg','rb').read() with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data)
plt.subplot(331)
plt.title("Original") plt.imshow(img_data.eval())
#plt.show() resized = tf.image.resize_images(img_data, [100, 100], method=0)
# TensorFlow的函数处理图片后存储的数据是float32格式的,需要转换成uint8才能正确打印图片。
print("Digital type: ", resized.dtype)
resized = np.asarray(resized.eval(), dtype='uint8')
# tf.image.convert_image_dtype(rgb_image, tf.float32)
plt.subplot(332)
plt.title("100*100")
plt.imshow(resized) #plt.show() croped = tf.image.resize_image_with_crop_or_pad(img_data, 500, 500)
padded = tf.image.resize_image_with_crop_or_pad(img_data, 1500, 1500)
plt.subplot(333)
plt.title("500*500")
plt.imshow(croped.eval())
# plt.show()
plt.subplot(334)
plt.title("1500*1500")
plt.imshow(padded.eval())
#plt.show() central_cropped = tf.image.central_crop(img_data, 0.5)
plt.subplot(335)
plt.title("*0.5")
plt.imshow(central_cropped.eval())
# plt.show() # 上下翻转
flipped1 = tf.image.flip_up_down(img_data)
plt.subplot(336)
plt.title("up-down")
plt.imshow(flipped1.eval())
#plt.show()
# 左右翻转
flipped2 = tf.image.flip_left_right(img_data)
plt.subplot(337)
plt.title("left-right")
plt.imshow(flipped2.eval())
#plt.show()
# 对角线翻转
transposed = tf.image.transpose_image(img_data)
plt.subplot(338)
plt.title("transpose")
plt.imshow(transposed.eval())
# plt.show() flipped3 = tf.image.random_flip_up_down(img_data)
plt.subplot(339)
plt.title("flip-up-down")
plt.imshow(flipped3.eval())
plt.show()
#————————————————————————————————————————————#
# 将图片的亮度-0.5。
adjusted = tf.image.adjust_brightness(img_data, -0.5)
plt.subplot(331)
plt.imshow(adjusted.eval()) plt.title("bright-0.5")
#plt.show() # 将图片的亮度0.5
adjusted = tf.image.adjust_brightness(img_data, 0.5)
plt.subplot(332)
plt.imshow(adjusted.eval()) plt.title("bright+0.5")
#plt.show()
# 在[-max_delta, max_delta)的范围随机调整图片的亮度。
adjusted = tf.image.random_brightness(img_data, max_delta=0.5)
plt.subplot(333)
plt.imshow(adjusted.eval()) plt.title("bright-random")
#plt.show()
# 将图片的对比度-5
adjusted = tf.image.adjust_contrast(img_data, -5)
plt.subplot(334)
plt.imshow(adjusted.eval())
plt.title("contrast-5")
#plt.show()
# 将图片的对比度+5
adjusted = tf.image.adjust_contrast(img_data, 5)
plt.subplot(335)
plt.imshow(adjusted.eval()) plt.title("contrast+5")
#plt.show()
# 在[lower, upper]的范围随机调整图的对比度。
adjusted = tf.image.random_contrast(img_data, 0.1, 0.6)
plt.subplot(336)
plt.imshow(adjusted.eval())
plt.title("contrast-random")
#plt.show() # 调整图片的色相
adjusted = tf.image.adjust_hue(img_data, 0.1)
plt.subplot(337)
plt.imshow(adjusted.eval())
plt.title("hue_0.1")
#plt.show() # 在[-max_delta, max_delta]的范围随机调整图片的色相。max_delta的取值在[0, 0.5]之间。
adjusted = tf.image.random_hue(img_data, 0.5)
plt.subplot(338)
plt.imshow(adjusted.eval())
plt.title("hue-random_0.5")
#plt.show() # 将图片的饱和度-5。
adjusted = tf.image.adjust_saturation(img_data, -2)
plt.subplot(339)
plt.title("saturation-2")
plt.imshow(adjusted.eval())
plt.show() # 在[lower, upper]的范围随机调整图的饱和度。
#adjusted = tf.image.random_saturation(img_data, 0, 5) # 将代表一张图片的三维矩阵中的数字均值变为0,方差变为1。
#adjusted = tf.image.per_image_standardization(img_data)

  

效果图:

Tensorflow图像处理的更多相关文章

  1. TensorFlow图像处理API

    TensorFlow提供了一些常用的图像处理接口,可以让我们方便的对图像数据进行操作,以下首先给出一段显示原始图片的代码,然后在此基础上,实践TensorFlow的不同API. 显示原始图片 impo ...

  2. [tensorflow]图像处理相关模块的安装(python3中PIL)

    直接上过程图(平台为Anaconda): 默认已经配置完了tensorflow的3.5的环境 我这里已经安装完成 接下来,就可以在python文件中引入模块了 from PIL import Imag ...

  3. TensorFlow图像处理函数

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 图像编码处理+图像大小调整+图像翻转+图像色彩调整+处理标注框 #!/usr/bin/env python # - ...

  4. tensorflow图像处理函数(1)

    1.tensorflow中对jpeg格式图像的编码/解码函数: import matplotlib.pyplot as plt import tensorflow as tf image_raw_da ...

  5. 吴裕雄 python 神经网络——TensorFlow 图像处理函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt image_raw_data = tf.gfile ...

  6. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...

  7. Tensorflow图像处理以及数据读取

    关于tensoflow的图像的处理,看到了一篇文章,个人觉得不错.https://blog.csdn.net/weiwei9363/article/details/79917942

  8. TensorFlow深度学习实战---图像数据处理

    图像的亮度.对比度等属性对图像的影响非常大,这些因素都会影响最后的识别结构.当然,复杂的预处理过程可能会导致训练效率的下降(利用TensorFlow中多线程处理输入数据的解决方案). 同一不同的原始数 ...

  9. ubuntu远程桌面

    用Linux已经有很长一段时间,但主要用于嵌入式开发(用交叉工具链进行版本编译),所以用命令行就可以了,而且敲的最多的命令就是make.最近开始搭建TensorFlow的开发环境,大部分工作都是命令行 ...

随机推荐

  1. Java通过pinyin4j实现汉字转拼音

       碰到个需求,需要按用户名字的首字母来排序.这就需要获取汉字对应的拼音了,突然就想起了pinyin4j这个jar包,于是就开始写了个汉字转拼音的工具类.在此记录一下,方便后续查阅 一.Pom依赖 ...

  2. ubuntu 12.04 桌面版关闭图形界面

    对于12.04的ubuntu桌面系统,如果想在开机的时候直接进入字符界面,那可以: 编辑文件 /etc/init/lightdm.conf,在第12行附近,原句“ and runlevel [!06] ...

  3. vue.js 2.0 官方文档学习笔记 —— 01. vue 介绍

    这是我的vue.js 2.0的学习笔记,采取了将官方文档中的代码集中到一个文件的形式.目的是保存下来,方便自己查阅. !官方文档:https://cn.vuejs.org/v2/guide/ 01. ...

  4. ZAB协议和Paxos算法

    前言在上一篇文章Paxos算法浅析中主要介绍了Paxos一致性算法应用的场景,以及对协议本身的介绍:Google Chubby是一个分布式锁服务,其底层一致性实现就是以Paxos算法为基础的:但这篇文 ...

  5. 部署AlwaysOn第二步:配置AlwaysOn,创建可用性组

    AlwaysOn是在SQL Server 2012中新引入的一种高可用技术,从名称中可以看出,AlwaysOn的设计目标是保持数据库系统永远可用.AlwaysOn利用了Windows服务器故障转移集群 ...

  6. Sleeping会话导致阻塞原理(上)

    背景 我在处理客户问题的时候,客户经常搞不懂sleeping 的由来,和他可能导致的问题.下面来详细说下 什么是sleeping 其实我们经常可以在数据库中看到“”sleeping“状态的连接,但是这 ...

  7. http to https

    https://www.cnblogs.com/powertoolsteam/p/http2https.html

  8. JQ_返回顶部

    $(function(){ $('#goto_top_btn').click(function() {var s = $(window).scrollTop(),h = $(window).heigh ...

  9. 关于java线程池的一丢丢

    线程池应用达到的目的 1.降低资源消耗:可以重复利用已创建的线程从而降低线程创建和销毁所带来的消耗. 2.提高响应速度:当任务到达时,不需要等线程创建就可以立即执行. 3.提高线程的可管理性:使用线程 ...

  10. [环境配置]Ubuntu 16.04 源码编译安装OpenCV-3.2.0+OpenCV_contrib-3.2.0及产生的问题

    1.OpenCV-3.2.0+OpenCV_contrib-3.2.0编译安装过程 1)下载官方要求的依赖包 GCC 4.4.x or later CMake 2.6 or higher Git GT ...