Locality Sensitive Hashing,LSH
1. 基本思想
局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。
局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高的相似度;相反,如果它们本身是不相似的,那么经过转换后它们应仍不具有相似性。
假设一个局部敏感哈希函数具有10个不同的输出值,而现在我们具有11个完全没有相似度的数据,那么它们经过这个哈希函数必然至少存在两个不相似的数据变为了相似数据。从这个假设中,我们应该意识到局部敏感哈希是相对的,而且我们所说的保持数据的相似度不是说保持100%的相似度,而是保持最大可能的相似度。
对于局部敏感哈希保持最大可能的相似度的这一点,我们也可以从数据降维的角度去考虑。数据对应的维度越高,信息量也就越大,相反,如果数据进行了降维,那么毫无疑问数据所反映的信息必然会有损失。哈希函数从本质上来看就是一直在扮演数据降维的角色。
2. Min-Hashing
定义:特征矩阵按行进行一个随机的置换后,第一个列值为1的行的行号。
对于两个数据\(C_1\)和\(C_2\),在Min-Hashing方法中,hash值相等的概率等于这两个数据降维前的Jaccard相似度(两个集合的交比两个集合的并)。用公式描述即:
\[
Pr[h_\pi(C_1) = h_\pi (C_2)] = sim(C_1, C_2)
\]
每一个置换等同于一个hash函数,多个置换构成一个hash函数族。假设我们拥有n个hash函数,要求在原始空间相似的两个数据在hash之后得到的n个值均相等的条件过于苛刻,所得到的精确率是很高,但是同样的召回率也会非常低。因此,我们放松了要求,在n个hash函数划分为b个hash函数族,只要两个数据在某一个hash函数族的值均相等,就认为这两个数据相似。
在上述定义下,两个数据在低维空间相似的概率为:\(1−(1−s^r)^b\)。解释如下:
- 对于两个数据的任意一个函数族来说,这两个函数族值相同的概率是:\(s^r\),其中s∈[0,1]是这两个文档的相似度。
- 也就是说,这两个函数族不相同的概率是\(1−s^r\)
- 这两个文档一共存在b个函数族,这bb个函数族都不相同的概率是\((1−s^r)^b\)
- 所以说,这b个函数族至少有一个相同的概率是\(1-(1−s^r)^b\)
以上过程可以为一个简单的AND-OR逻辑,这个逻辑同样也应用于下述基于p稳定分布的LSH中。
3. E2LSH:p稳定分布
定义:对于一个实数集R上的分布D,如果存在P>=0,对任何n个实数v1,…,vn和n个满足D分布的变量X1,…,Xn,随机变量\(\sum_iv_ix_i\)和\((\sum_i|v_i|^{p})^{1/p}x\)有相同的分布,其中\(x\)是服从D分布的一个随机变量,则称D为一个p稳定分布。
利用p稳定分布可以有效的近似高维特征向量,并在保证度量距离的同时,对高维特征向量进行降维,其关键思想是,产生一个d维的随机向量\(X\),随机向量\(X\)中的每一维随机、独立得从p稳定分布中产生。对于一个d维的特征向量\(V\),如定义,随机变量\(X.V\)具有和\((\sum_i|v_i|^{p})^{1/p}X\)一样的分布,因此可以用\(X.V\)表示向量\(V\)来估算\(||V||_p\) 。
p-稳定 LSH通过涉入p稳定分布和点积的概念,实现了LSH算法在欧几里得空间下的直接应用,而不需要嵌入Hamming空间。p-stable LSH中,度量是欧几里得空间下的lp准则,即向量v1与v2的距离定义为||v1-v2||p,然后通过设定的哈希函数将原始点映射到直线的等长线段上,每条线段便相当于一个哈希桶,与LSH方法类似,距离较近的点映射到同一哈希桶(线段)中的概率大,距离较远的点映射到同一哈希桶中的概率小,正好符合局部敏感的定义。
hash函数:p稳定分布下的hash函数为\(h_{x, b} (v) = \left \lfloor \frac{x.v + b}{w} \right \rfloor\),用于将d维的特征向量映射到整数集。其中\(x\)为d维向量,每一维都独立取自于p稳定分布,b为[0,w]范围内的随机数。其作用效果图如下:

哈希表的设计:将哈希过后的向量直接存入hash表,占用内存又不便于查找。因此论文定义了额外两个hash函数:
\[
h_1(x_1, x_2, ..., x_k) = ((\sum_{i=1}^{k} r_i a_i) mod C) mod tableSize
\]
\[
h_2(x_1, x_2, ..., x_k) = ((\sum_{i=1}^{k} r_i a_i) mod C)
\]
其中,h1的值作为哈希表索引,h2的值作为链表中的关键字,\(r_1\)和\(r_2\)为随机整数,\(C\)的取值为\(2^{32} - 5\)。
4. 缺点
LSH:
- 典型的基于概率模型生成索引编码的结果并不稳定。虽然编码位数增加,但是查询准确率的提高确十分缓慢;
- 需要大量的存储空间,不适合于大规模数据的索引。
E2LSH:
- E2LSH方法的目标是保证查询结果的准确率和查全率,并不关注索引结构需要的存储空间的大小;
- E2LSH使用多个索引空间以及多次哈希表查询,生成的索引文件的大小是原始数据大小的数十倍甚至数百倍。
5. 疑问
\(\sum_iv_ix_i\)和\((\sum_i|v_i|^{p})^{1/p}X\)在满足相同分布的前提下,有什么特点?或则说如果\(X\)不符合p稳定分布,对结果有什么影响?
- 向量距离的度量可以用范数表示,假设向量\(V = V_1 - V_2\),那么\(||V||_p\)即表示向量\(V_1\)和\(V_2\)的原始空间下的p范数距离;
- 点乘的几何意义表示一个向量在另一个向量下的投影表示,因此\(V_1.X - V_2.X = X.V = \sum_iv_ix_i\)表示的是向量\(V_1\)和\(V_2\)在向量\(X\)下投影的距离;
- 在\(X\)满足p稳定分布的前提下,可知(1)和(2)下的两个距离具有相同的分布,即满足了局部敏感的特点。
6. 参考
Locality Sensitive Hashing,LSH的更多相关文章
- [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...
- 局部敏感哈希-Locality Sensitive Hashing
局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分 ...
- 局部敏感哈希算法(Locality Sensitive Hashing)
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Lo ...
- LSH(Locality Sensitive Hashing)原理与实现
原文地址:https://blog.csdn.net/guoziqing506/article/details/53019049 LSH(Locality Sensitive Hashing)翻译成中 ...
- 转:locality sensitive hashing
Motivation The task of finding nearest neighbours is very common. You can think of applications like ...
- 局部敏感哈希Locality Sensitive Hashing(LSH)之随机投影法
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法.LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也 ...
- 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...
- 局部敏感哈希-Locality Sensitivity Hashing
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈 ...
- Java实现LSH(Locality Sensitive Hash )
在对大批量数据进行图像处理的时候,比如说我提取SIFT特征,数据集为10W张图片,一个SIFT特征点是128维,一张图片提取出500个特征点,这样我们在处理的时候就是对5000万个128维的数据进行处 ...
随机推荐
- MySQL keepalived 双主.md
MySQL keepalived 双主搭建 环境说明 系统 IP 主机名 mysql keepalived VIP CentOS 6.8 192.168.197.61 C6-node1 5.6.36 ...
- BZOJ2226:LCMSum(欧拉函数)
Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...
- BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...
- 2.3.3 Button(按钮)与ImageButton(图像按钮)
本节引言: 今天给大家介绍的Android基本控件中的两个按钮控件, Button普通按钮 ImageButton图像按钮: 其实ImageButton和Button的用法基本类似,至于与图片相关的则 ...
- svn up时提示跳过某节点
# svn up 提示跳过某某节点 解决办法: # svn revert 文件path 提示下,自己改的文件确定不要被revert了,那样你就merge就好了. svn命令可参考这个文章:htt ...
- always on 集群
准备工作 1. 四台已安装windows server 2008 r2 系统的虚拟机,配置如下: CPU : 1核 MEMORY : 2GB DISK : 40GB(未分区) NetAdapter ...
- WPF中ListBox /ListView如何改变选中条背景颜色
适用ListBox /ListView WPF中LISTVIEW如何改变选中条背景颜色 https://www.cnblogs.com/sjqq/p/7828119.html
- Linux 学习日记 2 (常用命令 + deb包的安装)
常用命令:以下是一些比较常用的命令,主要是关于安装软件的一些命令 @_@ cd ~/下载(文件名)/ //进入这个文件夹 , ~指的是根目录 cd .. //返回上一级文件夹 sudo apt-get ...
- vue JointJS 实例demo
前言 越来越发现,前端深入好难哦!虐成渣渣了. 需求:前端绘制灵活的关系图(此demo还是简单的,我的需求才跨出一小步) 安装 npm install jointjs 容器,工具栏 <templ ...
- 测试leader职责
一. 负责软件产品/项目测试工作的组织 参加软件产品开发前的需求调研和分析 根据需求规格说明书,概要设计和开发计划编写项目总体测试计划,详细测试计划,测试大纲和测试文档结构表[测试计划 a.已上线产品 ...