题目描述

小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。

输入输出格式

输入格式

两个正整数 \(a\) 和 \(b\),它们之间用一个空格隔开,表示小凯中金币的面值。

输出格式

一个正整数 \(N\),表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。

输入输出样例

输入样例#1

3 7

输出样例#1

11

说明

输入输出样例1 说明

小凯手中有面值为\(3\)和\(7\)的金币无数个,在不找零的前提下无法准确支付价值为\(1,2,4,5,8,11\) 的物品,其中最贵的物品价值为 \(11\),比 \(11\) 贵的物品都能买到,比如:

\(12 = 3 \times 4 + 7 \times 0\)

\(13 = 3 \times 2 + 7 \times 1\)

\(14 = 3 \times 0 + 7 \times 2\)

\(15 = 3 \times 5 + 7 \times 0\)

数据范围与约定

对于 \(30\%\) 的数据:\(1 \le a,b \le 50\)。

对于 \(60\%\) 的数据:\(1 \le a,b \le 10^4\)。

对于 \(100\%\) 的数据:\(1 \le a,b \le 10^9\)。

题解

这是一道很好的猜结论数论题。

看到样例,不是\(3 \times 7 - 10 = 11\)吗?于是,我们大胆地提交了刚才的结论所对应的代码。

咦?怎么没有\(AC\)?仔细一看数据范围:\(1 \le a,b \le 10^9\),\(10^9 \times 10^9\)不是爆了\(int\)吗?于是赶快把\(int\)改为\(long\) \(long\)。

于是,我们就\(AC\)了!

不过,我们还是要证明一下刚才的结论:

设币值分别为\(a\)、\(b\)。

容易得到:\(a \times b\)肯定可以用这两个币值表示出来。

\(a \times b - a\)呢?当然也可以,用\(b - 1\)张\(a\)就可以了。

\(a \times b - b\)呢?当然也可以,用\(a - 1\)张\(b\)就可以了。

\(a \times b - a - b\)呢?貌似不能了。

因式分解一下:

\(a \times b - a - b\)

\(= a(b - 1) - b\)

\(= a(b - 1) - (b - 1) - 1\)

\(=(a - 1)(b - 1) - 1\)

分不了了,说明\(a \times b - a - b\)不能用币值为\(a\)、\(b\)的钱凑出来。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype> using namespace std; inline long long gi()
{
long long f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
} long long a, b; int main(void)
{
a = gi(), b = gi();
cout << a * b - a - b;
return 0;
}

题解【洛谷P3951】[NOIP2017]小凯的疑惑的更多相关文章

  1. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  2. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  3. 题解P3951【小凯的疑惑】

    相信参加OI的oiers都是数学高手吧 我好像不是 (滑稽 那应该大家都接触过邮资问题吧! 所谓邮资问题,就类似于这一题,给定a和b两种邮资数,求最大的不能凑出的邮资 数.这里给出公式:最大的不能集出 ...

  4. NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  5. NOIP2017 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  6. 题解 洛谷P2189 【小Z的传感器】

    这题就是考察什么时候建边,貌似和搜索没有半毛钱关系\(qwq\) 首先没有传感器的房间是可以随便走来走去的,因为我们不用考虑顺序.于是就考虑先把这些点的相互的边给建起来. 接下来分析一波,对于第\(i ...

  7. luogu2951 noip2017 小凯的疑惑

    在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...

  8. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  9. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

随机推荐

  1. 500kuai

    https://www.bilibili.com/bangumi/media/md11653495/?spm_id_from=666.10.b_62616e67756d695f64657461696c ...

  2. 野路子码农系列(8)我终于大致搞懂了GBDT

    由于下下周要在组里介绍一个算法,最近开始提前准备,当初非常自信地写下自己最喜欢的GBDT,但随着逐步深入,发现其实自己对这个算法的细节并不是非常了解,了解的只是一些面试题的答案而已……(既然没有深入了 ...

  3. redux基础概念及执行流程详解

    一.执行流程 全局有一个公共的容器(所有组件都可以操作),我们可以在某个组件中把全局容器中的信息进行修改,而只要全局信息修改,就可以通知所有用到该信息的组件重新渲染(类似于发布订阅)==>red ...

  4. jQuery---scrollTop和scrollLeft的方法

    scrollTop和scrollLeft的方法 <script src="jquery-1.12.4.js"></script> <script> ...

  5. Laravel中使用QRcode自制二维码

    一.配置 1.在项目根目录输入命令 composer require simplesoftwareio/simple-qrcode 1.3.* 2.在config/app.php 的 provider ...

  6. [TJOI2009] 猜数字 - 中国剩余定理

    现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...

  7. Selenium模块/目录说明

      目录说明: selenium/common     #定义了webdriver的异常类 selenium/webdriver   #定义了webdriver所有python实现: 1.各种浏览器支 ...

  8. Token:服务端身份验证的流行方案

    01- 身份认证 服务端提供资源给客户端,但是某些资源是有条件的.所以服务端要能够识别请求者的身份,然后再判断所请求的资源是否可以给请求者. token是一种身份验证的机制,初始时用户提交账号数据给服 ...

  9. Codeforces Round #614 (Div. 2) C - NEKO's Maze Game

    题目链接:http://codeforces.com/contest/1293/problem/C 题目:给定一个 2*n的地图,初始地图没有岩浆,都可以走, 给定q个询问,每个询问给定一个点(x,y ...

  10. 洛谷P1603 斯诺登的密码

    https://www.luogu.org/problem/P1603 #include<bits/stdc++.h> using namespace std; struct s { st ...