1..groupby()[].agg(by={})

2. collections.de...(lambda:1)

统计的单词是语料库中所有的词, 对Dataframe统计单词词频,同时增加一列数据count,这里我们使用reset_index,sort_values(by = ['counts], ascending=False)

这里使用的数据是经过分词后的语料库里所有的数据,该数据已经去除了停用词,

第一步:载入语料库的数据

第二步:进行分词

第三步:载入停用词,对停用词数据进行序列化tolist(),然后去除分词后语料库中的停用词

第四步: 使用grouby()[].agg 进行词频统计,使用reset_index().sort_values根据新增的counts列进行排序操作

# 1.导入数据语料的新闻数据
df_data = pd.read_table('data/val.txt', names=['category', 'theme', 'URL', 'content'], encoding='utf-8') # 2.对语料库进行分词操作
df_contents = df_data.content.values.tolist() # list of list 结构
Jie_content = []
for df_content in df_contents:
split_content = jieba.lcut(df_content)
if len(split_content) > 1 and split_content != '\t\n':
Jie_content.append(split_content) # 3. 导入停止词的语料库, sep='\t'表示分隔符, quoting控制引号的常量, names=列名, index_col=False,不用第一列做为行的列名, encoding
stopwords = pd.read_csv('stopwords.txt', sep='\t', quoting=3, names=['stopwords'], index_col=False, encoding='utf-8')
print(stopwords.head()) # 对文本进行停止词的去除
def drop_stops(Jie_content, stopwords):
clean_content = []
all_words = []
for j_content in Jie_content:
line_clean = []
for line in j_content:
if line in stopwords:
continue
line_clean.append(line)
all_words.append(line)
clean_content.append(line_clean) return clean_content, all_words
# 将DateFrame的stopwords数据转换为list形式
stopwords = stopwords.stopwords.values.tolist()
clean_content, all_words = drop_stops(Jie_content, stopwords)
print(clean_content[0]) # 4 .对所有词统计词频,做一个字典,然后进行排序, 这里也可以使用collections实现 df_dict = pd.DataFrame({'content':clean_content})
all_words_pd = pd.DataFrame({'all_word':all_words})
all_words_pd = all_words_pd.groupby(by=['all_word'])['all_word'].agg({'count':np.size})
all_words_pd = all_words_pd.reset_index().sort_values(by=['count'], ascending=False)
print(all_words_pd.head())

机器学习入门-贝叶斯统计语料库的词频.groupby() collections的更多相关文章

  1. 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)

    函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...

  2. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  3. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  4. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  5. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  6. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  7. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  8. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

  9. 机器学习入门:K-近邻算法

    机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题. ...

随机推荐

  1. 自制hashmap

    package jjj; public class MyHashMap<K, V> { //initialization capacity private int capacity = 1 ...

  2. subzero 基于postgrest && openresty && rabbitmq 的快速rest/graphql 开发平台

    subzero是在postgrest 基础上开发的,提供了graphql 的支持,同时开发的cli 工具也很方便 集成了rabbitmq 可以让我们的应用具体实时的特性 参考架构图 使用 最简单的使用 ...

  3. No result defined for action com.nynt.action.ManageAction and result input问题

    No result defined for action com.nynt.action.ManageAction and result input 问题原因: 1). 在action类中定义的一个r ...

  4. 【MVC】View的使用

    /Views/_ViewStart.cshtml 文件会在其他视图文档被加载之前被载入,代码如下: @{ Layout = "~/Views/Shared/_Layout.cshtml&qu ...

  5. MySQLi基于面向对象的编程

    http://blog.csdn.net/koastal/article/details/50650500

  6. cookie、localStorage、sessionStorage 的生命周期

    生命周期 存储 生命周期 cookie 没有设置 expires 选项时,cookie 的生命周期仅限于当前会话中,关闭浏览器意味着这次会话的结束,所以会话 cookie 仅存在于浏览器打开状态之下. ...

  7. vue-progressbar 知识点

    使用步骤: 安装 import.Vue.use() 组件里,created() 和 mounted() 复制官方github地址上的代码 官方github地址:https://github.com/h ...

  8. ASP.NET Core 2.0 使用支付宝PC网站支付实现代码(转)

    最近在使用ASP.NET Core来进行开发,刚好有个接入支付宝支付的需求,百度了一下没找到相关的资料,看了官方的SDK以及Demo都还是.NET Framework的,所以就先根据官方SDK的源码, ...

  9. ORA-01919: role 'OLAPI_TRACE_USER' does not exist

    我在用数据泵导入数据的时候报的错 TEST_USER1@ORCL> conn / as sysdbaSYS@ORCL> grant plustrace to TEST_USER1; gra ...

  10. js去除运营商或者路由器添加的广告脚本

    是不是偶尔发现在家里看网页的时候回插入一个广告,很烦人.开发的网站,上传到了阿里云 oss,设置了域名解析,但是在家里晚上访问的时候,总会在页面添加一个广告,导致页面卡主,一开始以为是路由器的问题,以 ...