1..groupby()[].agg(by={})

2. collections.de...(lambda:1)

统计的单词是语料库中所有的词, 对Dataframe统计单词词频,同时增加一列数据count,这里我们使用reset_index,sort_values(by = ['counts], ascending=False)

这里使用的数据是经过分词后的语料库里所有的数据,该数据已经去除了停用词,

第一步:载入语料库的数据

第二步:进行分词

第三步:载入停用词,对停用词数据进行序列化tolist(),然后去除分词后语料库中的停用词

第四步: 使用grouby()[].agg 进行词频统计,使用reset_index().sort_values根据新增的counts列进行排序操作

# 1.导入数据语料的新闻数据
df_data = pd.read_table('data/val.txt', names=['category', 'theme', 'URL', 'content'], encoding='utf-8') # 2.对语料库进行分词操作
df_contents = df_data.content.values.tolist() # list of list 结构
Jie_content = []
for df_content in df_contents:
split_content = jieba.lcut(df_content)
if len(split_content) > 1 and split_content != '\t\n':
Jie_content.append(split_content) # 3. 导入停止词的语料库, sep='\t'表示分隔符, quoting控制引号的常量, names=列名, index_col=False,不用第一列做为行的列名, encoding
stopwords = pd.read_csv('stopwords.txt', sep='\t', quoting=3, names=['stopwords'], index_col=False, encoding='utf-8')
print(stopwords.head()) # 对文本进行停止词的去除
def drop_stops(Jie_content, stopwords):
clean_content = []
all_words = []
for j_content in Jie_content:
line_clean = []
for line in j_content:
if line in stopwords:
continue
line_clean.append(line)
all_words.append(line)
clean_content.append(line_clean) return clean_content, all_words
# 将DateFrame的stopwords数据转换为list形式
stopwords = stopwords.stopwords.values.tolist()
clean_content, all_words = drop_stops(Jie_content, stopwords)
print(clean_content[0]) # 4 .对所有词统计词频,做一个字典,然后进行排序, 这里也可以使用collections实现 df_dict = pd.DataFrame({'content':clean_content})
all_words_pd = pd.DataFrame({'all_word':all_words})
all_words_pd = all_words_pd.groupby(by=['all_word'])['all_word'].agg({'count':np.size})
all_words_pd = all_words_pd.reset_index().sort_values(by=['count'], ascending=False)
print(all_words_pd.head())

机器学习入门-贝叶斯统计语料库的词频.groupby() collections的更多相关文章

  1. 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)

    函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...

  2. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  3. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  4. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  5. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  6. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  7. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  8. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

  9. 机器学习入门:K-近邻算法

    机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题. ...

随机推荐

  1. hibernate 1-1(具体解释)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qilixiang012/article/details/27870343 域模型 关系数据模型: 依 ...

  2. CentOS 7防火墙开放端口快速方法

    这篇文章主要为大家详细介绍了Centos7.1防火墙开放端口的快速方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下   例如安装Nagios后,要开放5666端口与服务器连接,命令如下: [ro ...

  3. bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...

  4. Net分布式系统整体框架

    Net分布式系统之一:系统整体框架介绍 一.设计目的 从事.Net平台开发系统已有8年多了,一直思考搭建.Net分布式系统架构.基于window平台搭建的大型分布式系统不多,之前了解过myspace. ...

  5. ML(3): 贝叶斯方法

    对于分类问题,我们每个人每天都在执行分类操作,只是我们没有意识到罢了.例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女:你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱.那边有个非主流” ...

  6. [转]Oracle中trace的几种

    Oracle中trace的几种 标签: 杂谈   我们在Oracle中在做troubleshooting的时候,经常要去做跟踪来查错,那今天就介绍几种trace的方法. 在这之前,我先说说10046事 ...

  7. Oracle-EXP-00011 表不存在

    Oracle-EXP-00011 表不存在 点我,点我~

  8. 在C#客户端用HTTP上传文件到Java服务器

    在C#客户端用HTTP上传文件到Java服务器  来源:http://www.cnblogs.com/AndyDai/p/5135294.html 最近在做C / S 开发,需要在C#客户端上传文件到 ...

  9. bzoj 4449: [Neerc2015]Distance on Triangulation

    Description 给定一个凸n边形,以及它的三角剖分.再给定q个询问,每个询问是一对凸多边行上的顶点(a,b),问点a最少经过多少条边(可以是多边形上的边,也可以是剖分上的边)可以到达点b. I ...

  10. [转]预编译 ASP.NET 网站

    转自:如何:预编译 ASP.NET 网站 Visual Studio 2005   预编译 ASP.NET 网站可缩短用户的初始响应时间,因为页在第一次被请求时无需编译.这对于经常更新的大型网站尤其有 ...