『Plotly实战指南』--折线图绘制基础篇
在数据分析的世界中,折线图是一种不可或缺的可视化工具。
它能够清晰地展示数据随时间或其他变量的变化趋势,帮助我们快速发现数据中的模式、趋势和异常。
无论是金融市场分析、气象数据监测,还是业务增长趋势预测,折线图都能以直观的方式呈现关键信息。
本文将从基础开始,介绍如何使用Plotly库来绘制折线图,并掌握数据预处理的关键技巧。
1. 单条折线轻松绘制
1.1. 时间序列数据准备
时间序列数据是折线图中最常见的数据类型之一,它以时间为索引,记录了某个变量在不同时间点的值。
时间序列数据的特点是数据点之间具有时间顺序,这种顺序使得数据能够反映变量随时间的变化趋势。
时间序列数据可以通过多种方式获取,例如从数据库中提取、从API接口获取,或者直接生成模拟数据。
以下是一个简单的示例代码,展示如何生成测试用的时间序列数据:
import pandas as pd
import numpy as np
# 创建时间序列索引
date_range = pd.date_range(start='2025-01-01', end='2025-01-31', freq='D')
# 生成随机数据
data = np.random.randn(len(date_range))
# 创建DataFrame
df = pd.DataFrame(data, index=date_range, columns=['Value'])
print(df)
在上面的代码中,我们使用pandas库生成了一个时间序列索引,并创建了一个包含随机值的DataFrame。
其中索引为时间戳,列名为数据值。
1.2. 绘制单折线图
在绘制折线图之前,我们需要将数据导入到Plotly中。
Plotly通常使用pandas的DataFrame作为数据输入格式。
以下代码展示如何使用Plotly绘制单条折线图:
import plotly.express as px
# 使用Plotly绘制折线图
fig = px.line(df, x=df.index, y='Value', title='单条折线图示例')
# 展示图表
fig.show()

在上述代码中,我们使用plotly.express模块中的line函数来绘制折线图。
x参数指定了时间轴,y参数指定了数据值,title参数用于设置图表的标题。
2. 折线图数据预处理技巧
在绘制折线图之前,数据预处理是一个关键步骤。
数据预处理的目的是清理数据中的噪声、处理缺失值和异常值,并将数据转换为适合Plotly绘制的格式。
2.1. 数据清洗与去噪
在实际应用中,数据往往存在缺失值、异常值和噪声等问题。
这些问题会影响图表的准确性和可读性,因此在绘制折线图之前,我们需要对数据进行清洗和去噪。
- 识别并处理缺失值
缺失值是数据中常见的问题之一,处理缺失值的方法包括删除缺失值、填充缺失值等。
# 检查缺失值
print(df.isnull().sum())
# 填充缺失值
df.ffill(inplace=True) # 前向填充
# df.bfill(inplace=True) # 后向填充
# df.fillna(value=0, inplace=True) # 填充为特定值
在上述代码中,我们使用pandas的方法来处理缺失值。
ffill表示前向填充,即用前一个非缺失值填充当前缺失值;
bfill表示后向填充,即用后一个非缺失值填充当前缺失值;
value=0 表示使用fillna将缺失值填充为0。
- 检测并修正异常值
异常值是指数据中明显偏离正常范围的值。
异常值可能会影响图表的趋势和准确性,因此我们需要检测并修正异常值。
# 检测异常值
mean = df['Value'].mean()
std = df['Value'].std()
threshold = 3 # 设置阈值
outliers = df[(df['Value'] > mean + threshold * std) | (df['Value'] < mean - threshold * std)]
print("异常值:")
print(outliers)
# 修正异常值
df.loc[outliers.index, 'Value'] = mean
在上述代码中,我们使用了均值和标准差的方法来检测异常值。
如果某个值偏离均值超过3倍标准差,则将其视为异常值。
最后,我们将异常值修正为均值。
2.2. 数据去噪方法
数据噪声是指数据中的随机波动,这些波动可能会影响图表的趋势和可读性。
常见的数据去噪方法包括简单移动平均法和滑动窗口去噪。
# 简单移动平均法去噪
window_size = 3 # 设置滑动窗口大小
df['Smoothed'] = df['Value'].rolling(window=window_size).mean()
# 绘制去噪后的折线图
fig = px.line(df, x=df.index, y=['Value', 'Smoothed'], title='数据去噪效果对比')
fig.show()

在上述代码中,我们使用了rolling方法和mean方法来计算滑动窗口内的平均值,从而实现去噪。
window_size参数表示滑动窗口的大小。
运行这段代码后,将看到原始数据和去噪后数据的对比效果。
2.3. 数据格式转换与适配
Plotly通常要求数据以pandas的DataFrame格式输入,其中索引为时间戳,列名为数据值。
因此,在绘制折线图之前,我们需要将数据转换为适合Plotly的格式。
- 从
CSV到Pandas DataFrame
从CSV文件中读取数据并转换为DataFrame是常见的数据处理步骤。
import pandas as pd
# 从CSV文件中读取数据
df = pd.read_csv('data.csv', parse_dates=['Date'], index_col='Date')
df.head()
在上述代码中,我们使用了pandas的read_csv函数来读取CSV文件。
parse_dates=['Date']参数表示将Date列解析为时间戳,
index_col='Date'参数表示将Date列设置为索引。
- 从
JSON到Pandas DataFrame
从JSON文件中读取数据并转换为DataFrame也是常见的数据处理步骤。
以下是一个示例代码:
import pandas as pd
# 从JSON文件中读取数据
df = pd.read_json('data.json', orient='records')
# 将时间戳列转换为索引
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
df.head()
在上述代码中,我们使用了pandas的read_json函数来读取JSON文件。
orient='records'参数表示JSON文件的格式为记录格式。然后,我们将时间戳列转换为索引。
总的来说,在将数据转换为适合Plotly绘图的格式时,需要注意以下几点:
- 时间戳格式统一:确保所有时间戳的格式一致,例如使用
pd.to_datetime将时间戳转换为统一的格式 - 数据类型转换:确保数据类型正确,例如将字符串类型的数据转换为数值类型
- 索引与列名:确保索引为时间戳,列名为数据值
3. 总结
使用Plotly能够轻松绘制折线图。
在本文中,我们从基础的折线图绘制开始,然后逐步介绍了数据预处理技巧。
希望这些内容能帮助你在数据分析中更好地利用Plotly绘制折线图。
下一篇会继续介绍使用Plotly绘制折线图的一些高级功能。
『Plotly实战指南』--折线图绘制基础篇的更多相关文章
- 2017-2018-2 20155303『网络对抗技术』Exp8:Web基础
2017-2018-2 『网络对抗技术』Exp8:Web基础 --------CONTENTS-------- 一.原理与实践说明 1.实践具体要求 2.基础问题回答 二.实践过程记录 1.Web前端 ...
- # 2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础
2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础 一.原理与实践说明 1.实践具体要求 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML ...
- 2017-2018-2 20155303『网络对抗技术』Exp5:MSF基础应用
2017-2018-2 20155303『网络对抗技术』Exp5:MSF基础应用 --------CONTENTS-------- 一.原理与实践说明 1.实践内容 2.预备知识 3.基础问题 二.实 ...
- 2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用
2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:由攻击者或渗透测试者利 ...
- # 2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用
2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:使用者利用漏洞进行攻击 ...
- 2017-2018-2 20155327『网络对抗技术』Exp5:MSF基础应用
2017-2018-2 20155327『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:使用者利用漏洞进行攻击 ...
- qt外部数据传入实现动态的折线图绘制
在嵌入式开发中,实现数据收集与显示很常见,对于希望数据稳定的应用来说, 折现图的表现形式很符合条件. 本实现是通过qt的signal-slot来 ...
- C# WinForm开发系列之c# 通过.net自带的chart控件绘制饼图,柱形图和折线图的基础使用和扩展
一.需要实现的目标是: 1.将数据绑定到pie的后台数据中,自动生成饼图. 2.生成的饼图有详细文字的说明. 1.设置chart1的属性Legends中默认的Legend1的Enable为false: ...
- Python_散点图与折线图绘制
在数据分析的过程中,经常需要将数据可视化,目前常使用的:散点图 折线图 需要import的外部包 一个是绘图 一个是字体导入 import matplotlib.pyplot as plt fro ...
- [Python Study Notes]折线图绘制
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
随机推荐
- H2数据库用户自定义函数方法及范例
H2数据库,是Java实现的内存数据库.可使用它作为嵌入式内存数据库,但就其特性还用更多值得应用在实际项目中的意义.之前的一篇Blog中已经描述过其使用方法及丰富的连接数据库方式. 官方主页:http ...
- No match for argument: kde-l10n-Chinese 报错
背景:安装 kde-l10n-Chinese 软件包报错 原因:该安装包适用于 centos7 系统,若为 centos8 则无法安装 解决办法:更换适配 centos 8 中文安装包 yum ins ...
- Discord技术架构调研(IM即时通讯技术架构分析)
一.目标 调研 discord 的整体架构,发掘可为所用的设计思想 二.调研背景 Discord作为目前比较火的一个在线聊天和语音通信平台且具有丰富的功能.另外其 "超级"群 概念 ...
- G1原理—4.G1垃圾回收的过程之Young GC
大纲 1.G1的YGC过程 2.YGC并行处理阶段的过程 3.YGC串行处理阶段的过程(一) 4.YGC串行处理阶段的过程(二) 5.整个YGC的执行流程总结 1.G1的YGC过程 (1)YGC相关的 ...
- c#利用异步方法去模拟多线程处理业务
一个巧妙的设计 原理:利用async 标识方法执行异步处理 List<long> listIds = new List<long>();//业务任务:假设处理这个列表的任务 o ...
- 免费-高清免费视频录像软件OBS
OBS studio 是免费开源的. https://obsproject.com/download 中文绿色版: http://www.xitongzhijia.net/soft/151705.ht ...
- tomcat常用配置详解和优化方法-copy
tomcat常用配置详解和优化方法 参考: http://blog.csdn.net/zj52hm/article/details/51980194 http://blog.csdn.net/wuli ...
- canal源码分析简介-4
7.0 driver模块 2018-11-10 22:30:19 6,053 4 driver,顾名思义为驱动.熟悉jdbc编程的同学都知道,当项目中需要操作数据库(oracle.sqlserve ...
- 【Docker】---部署集群(2)
RocketMQ(2)-Docker集群部署RocketMQ =前言= 1.因为自己只买了一台阿里云服务器,所以RocketMQ集群都部署在单台服务器上只是端口不同,如果实际开发,可以分别部署在多台服 ...
- 一些devops、软件工程的个人感悟
1.devops不是简单的工具,是思想. (1)devops核心在于快速编译构建.自动测试化.自动部署发布 (2)工具只是辅助手段,无论是Jenkins.腾讯蓝盾等等,甚至是手动bat+bash搭建, ...