Codeforces Codeforces Round #484 (Div. 2) E. Billiard
Codeforces Codeforces Round #484 (Div. 2) E. Billiard
题目连接:
http://codeforces.com/contest/982/problem/E
Description
Consider a billiard table of rectangular size $n \times m$ with four pockets. Let's introduce a coordinate system with the origin at the lower left corner (see the picture).
There is one ball at the point $(x, y)$ currently. Max comes to the table and strikes the ball. The ball starts moving along a line that is parallel to one of the axes or that makes a $45^{\circ}$ angle with them. We will assume that:
- the angles between the directions of the ball before and after a collision with a side are equal,
- the ball moves indefinitely long, it only stops when it falls into a pocket,
- the ball can be considered as a point, it falls into a pocket if and only if its coordinates coincide with one of the pockets,
- initially the ball is not in a pocket.
Note that the ball can move along some side, in this case the ball will just fall into the pocket at the end of the side.
Your task is to determine whether the ball will fall into a pocket eventually, and if yes, which of the four pockets it will be.
Sample Input
4 3 2 2 -1 1
Sample Output
0 0
题意
给定一个球和方向,问能不能在盒子里停下来
Giving a ball and vector, judge it will stop in the box or not
官方题解以及机器翻译。。:
如果您在平面上相对于其两侧对称地反射矩形,则球的新轨迹将更容易。线性轨迹如果是正确的。一个可能的解决方案是
- 如果矢量与轴成90度角,则写入if-s。
- 否则,转动场以使影响矢量变为(1,1)。
- 写出球的直线运动方程: - 1·x + 1·y + C = 0。如果我们用球的初始位置代替,我们可以找到系数C.
- 请注意,在平面的无限平铺中,可以以(k1·n,k2·m)的形式表示任何孔的坐标。
- 用球的线的方程中的点的坐标代替。丢番图方程a·k1 + B·k2 = Cis。如果C |可以解决GCD(A,B)。否则,没有解决方案。
- 在这个丢番图方程的所有解中,我们对正半轴上的最小值感兴趣。
- 通过查找k1,k2可以很容易地得到相应口袋的坐标
- 如果需要,将场转回。
If you symmetrically reflect a rectangle on the plane relative to its sides, the new trajectory of the ball will be much easier. Linear trajectory if be correct. One possible solution is:
- If the vector is directed at an angle of 90 degrees to the axes, then write the if-s.
- Otherwise, turn the field so that the impact vector becomes (1, 1).
- Write the equation of the direct motion of the ball: – 1·x + 1·y + C = 0. If we substitute the initial position of the ball, we find the coefficient C.
- Note that in the infinite tiling of the plane the coordinates of any holes representable in the form (k1·n, k2·m).
- Substitute the coordinates of the points in the equation of the line of the ball. The Diophantine equation a·k1 + B·k2 = Cis obtained. It is solvable if C | gcd(A, B). Otherwise, there are no solutions.
- Of all the solutions of this Diophantine equation, we are interested in the smallest on the positive half-axis.
- By finding k1, k2 it is easy to get the coordinates of the corresponding pocket
- Rotate the field back if required.
代码
#include <bits/stdc++.h>
using namespace std;
long long x, y, xx, yy;
long long vx, vy;
long long fx, fy;
long long c;
long long ex_gcd(long long a, long long b, long long &xa, long long &ya) {
if (!b) {
xa = c;
ya = 0;
return a;
}
long long ret = ex_gcd(b, a % b, xa, ya);
long long temp = xa;
xa = ya;
ya = temp - (a / b) * ya;
return ret;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cerr.tie(nullptr);
cin >> x >> y >> xx >> yy >> vx >> vy;
if (!vx) {
if (xx == 0 || xx == x) {
if (vy == 1) {
cout << xx << " " << y;
} else {
cout << xx << " " << 0;
}
} else
return 0 * puts("-1");
return 0;
}
if (!vy) {
if (yy == 0 || yy == y) {
if (vx == 1) {
cout << x << " " << yy;
} else {
cout << 0 << " " << yy;
}
} else
return 0 * puts("-1");
return 0;
}
if (vx == -1) fx = 1, xx = x - xx;
if (vy == -1) fy = 1, yy = y - yy;
c = xx - yy;
if (c % __gcd(x, y))
return 0 * puts("-1");
c /= __gcd(x, y);
long long m = y / __gcd(x, y);
long long xxx, yyy;
ex_gcd(x, y, xxx, yyy);
xxx = (xxx % m + m - 1) % m + 1;
yyy = -(yy - xx + x * xxx) / y;
long long ansn = x, ansm = y;
if (xxx % 2 == 0) ansn = x - ansn;
if (yyy % 2 == 0) ansm = y - ansm;
if (fx) ansn = x - ansn;
if (fy) ansm = y - ansm;
cout << ansn << " " << ansm;
}
Codeforces Codeforces Round #484 (Div. 2) E. Billiard的更多相关文章
- 【数论】【扩展欧几里得】Codeforces Round #484 (Div. 2) E. Billiard
题意:给你一个台球桌面,一个台球的初始位置和初始速度方向(只可能平行坐标轴或者与坐标轴成45度角),问你能否滚进桌子四个角落的洞里,如果能,滚进的是哪个洞. 如果速度方向平行坐标轴,只需分类讨论,看它 ...
- Codeforces Codeforces Round #484 (Div. 2) D. Shark
Codeforces Codeforces Round #484 (Div. 2) D. Shark 题目连接: http://codeforces.com/contest/982/problem/D ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- Codeforces Beta Round #79 (Div. 2 Only)
Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...
- Codeforces Beta Round #77 (Div. 2 Only)
Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...
- Codeforces Beta Round #76 (Div. 2 Only)
Codeforces Beta Round #76 (Div. 2 Only) http://codeforces.com/contest/94 A #include<bits/stdc++.h ...
- Codeforces Beta Round #75 (Div. 2 Only)
Codeforces Beta Round #75 (Div. 2 Only) http://codeforces.com/contest/92 A #include<iostream> ...
- Codeforces Beta Round #74 (Div. 2 Only)
Codeforces Beta Round #74 (Div. 2 Only) http://codeforces.com/contest/90 A #include<iostream> ...
随机推荐
- make,makefile,cmake“暴力编译法”的个人经验或理解。
通常我们在本地编译库(opecv.pcl)等我们喜欢使用make -jN (N代表线程数)这样可以加速编译过程, 但是,这不一定是“线程安全”的,因为当某个线程在编译时,经常其他线程编译依赖本线程的 ...
- git 合并冲突 取消合并
如果有冲突,会出现MERING 使用git merge --abort命令解决冲突
- 解决访问HTTPS,抛出的异常javax.net.ssl.SSLHandshakeException
本地测试没问题,http换成https抛出异常javax.net.ssl.SSLHandshakeException,网上有说是服务器证书,有说要启动SSL3协议的,反正没有找到有用的. 在GET和P ...
- [Solution] 893. Groups of Special-Equivalent Strings
Difficulty: Easy Problem You are given an array A of strings. Two strings S and T are special-equiva ...
- Java并发编程:深入剖析ThreadLocal(转)
目录大纲: 一.对ThreadLocal的理解 二.深入解析ThreadLocal类 三.ThreadLocal的应用场景 原文链接:http://www.cnblogs.com/dolphin052 ...
- STL基础复习
stl容器:vector,deque,list,map/multimap,set 特殊容器:stack,queue,priority_queue 通用操作 size() 返回当前容器元素数量 emp ...
- 推荐几个可以从google play(谷歌应用商店)直接下载原版APP的网站
http://apk-dl.com/ https://apkpure.com/ http://apk-downloaders.com
- Flask-WTForms 简单使用
安装 wtforms 2.2.1 直接上代码: app.py 文件: from flask import Flask, render_template, request from wtforms im ...
- PHP整理--PHP语句流程
PHP跟JS一样是从上往下的执行语句:同样的PHP也有if语句.循环.数组和函数. 一.条件语句 if..else... swich (1)多条if语句 $name=30; if($nam ...
- Jenkins+docker自动部署
项目目录结构如下 对此项目,使用Jenkins构建dockers镜像 步骤如下: 1.安装Jenkins和docker,具体安装步骤,自行度娘把,在此不详述了. 2.Jenkins安装插件Gradle ...