题目描述

  给你一棵有根树,每个点有两个属性\(a,b\)

  两人轮流操作,每次要减小一个点的\(a\)值,要求

\[a_x\geq\sum_{i\in child(x)}a_ib_i
\]

  保证初始状态满足这个要求。

  \(\sum n\leq 5\times {10}^5\)

题解

  令

\[s_x=a_x-\sum_{i\in child(x)}a_ib_i
\]

  每次操作相当于减小\(s_x\),把\(s_{f_x}\)加上减小的值$\times $$b_x$。

  当\(b_x=0\)时\(x\)对\(f_x\)没有影响,可以把\(x\)视为根。

  把原树划分成森林后做阶梯博弈即可。

  计算出所有深度为\(x\)的点的\(s_x\)异或和,如果非零则先手胜,否则后手胜。

  阶梯博弈:所有深度为偶数的点的信息是没有用的。如果把某一个偶数层的点的值挪到奇数层的点上,对手可以再把这些值挪到偶数层的点上。所以最好情况都不会对自己有利,就不会这么决策。

  时间复杂度:\(O(n)\)

代码

#include<cstdio>
#include<cstring>
using namespace std;
struct graph
{
int v[100010];
int t[100010];
int h[50010];
int n;
void add(int x,int y)
{
n++;
v[n]=y;
t[n]=h[x];
h[x]=n;
}
void init()
{
memset(h,0,sizeof h);
n=0;
}
};
graph g;
int f[100010];
int ban[100010];
int s[100010];
int a[100010];
int b[100010];
void dfs(int x,int fa)
{
f[x]=fa;
s[x]=a[x];
int i;
for(i=g.h[x];i;i=g.t[i])
if(g.v[i]!=fa)
{
dfs(g.v[i],x);
s[x]-=a[g.v[i]]*b[g.v[i]];
}
}
int ans;
void dfs2(int x,int d)
{
if((d&1))
ans^=s[x];
int i;
for(i=g.h[x];i;i=g.t[i])
if(g.v[i]!=f[x]&&!ban[g.v[i]])
dfs2(g.v[i],d+1);
}
void solve()
{
int n;
scanf("%d",&n);
int i,x,y;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=1;i<=n;i++)
scanf("%d",&b[i]);
g.init();
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
g.add(x,y);
g.add(y,x);
}
for(i=1;i<=n;i++)
ban[i]=0;
for(i=1;i<=n;i++)
if(!b[i]||i==1)
ban[i]=1;
dfs(1,0);
ans=0;
for(i=1;i<=n;i++)
if(ban[i])
dfs2(i,1);
if(ans)
printf("YES\n");
else
printf("NO\n");
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【XSY2716】营养餐 博弈论的更多相关文章

  1. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  2. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  3. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  4. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  5. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

  7. 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏

    文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...

  8. poj 3710 Christmas Game 博弈论

    思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...

  9. hdoj 1404 Digital Deletions(博弈论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...

随机推荐

  1. NewZealand。。。

    秀个存在感...

  2. 百度软件开发实习生c++方向面经(一面)

    百度2017实习生软件开发(cpp方向) 首先说一下岗位.分为软件开发,开发测试,前端,机器学习数据挖掘,移动开发,据我观察,报的人数来看,软件开发最多,移动开发和开发测试较少.百度前台还准备了吃的喝 ...

  3. Python_每日习题_0003_完全平方数

    # 题目 一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? # 程序分析 因为168对于指数爆炸来说实在太小了,所以可以直接省略数学分析,用最朴素的方法来获取 ...

  4. IOS 开发之-- textfield和textview,return键的改变,点击return键

    IOS 开发之-- textfield和textview,return键的改变,点击return键 一,textfield的return键改变 方案1.改变键盘右下角的换行(enter)键为完成键,后 ...

  5. CI框架在控制器中切换读写库和读写库

    CodeIgniter框架版本:3.1.7 ,php版本:5.6.* ,mysql版本:5.6 在Ci框架中,可以在application/config/database.php中配置多个group, ...

  6. Oss文件存储

    包含文件的上传下载和生成临时的url # -*- coding: utf-8 -*- import os import oss2 import configparser from Config imp ...

  7. css中如何做到容器按比例缩放

    需求: 一般在响应式中,我们会要求视频的宽高比为16:9或4:3,这么一来就比较头大了.当用户改变浏览器宽度的时候(改变高度不考虑),视频的宽度变了,那么高度也得根据我们要求的16:9或4:3改变. ...

  8. [转帖]FORFILES 的简单介绍。

    FORFILES https://blog.csdn.net/sandy9919/article/details/82932460 命令格式: forfiles.exe /p "D:\备份& ...

  9. HDU 2459 Maximum repetition substring

    题目:Maximum repetition substring 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2459 题意:给你一个字符串,求连续重复出现 ...

  10. 解决小程序webview缓存机制

    在打开webview的时候在地址后面加上随机数或者字符串 并且H5页面使用文件hash