MT【286】最佳有理逼近
2017北大优秀中学生夏令营
已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根,
求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p}{q}|\ge \dfrac{C}{q^2}$$

分析:这题涉及的背景知识是数论里的最佳有理逼近和Liouville超越数定理.
一般的$\omega $是整系数方程$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0$的一个根,
则显然存在$C=C(\omega)=\max\{\dfrac{1}{q^n},n*\max\limits_{k=1,2,\cdots,n}|ka_k^{k-1}|\}$,
当$\omega-1<x<\omega+1$ 时$|f^{'}(x)|=|na_nx^{n-1}+\cdots+a_1|<C$,故
若$\dfrac{p}{q}\in[\omega-1,\omega+1]$时
由拉格朗日中值定理$f(\dfrac{p}{q})-f(\omega)=(\dfrac{p}{q}-\omega)f^{'}(\eta)$
又$f|(\dfrac{p}{q})|=\dfrac{|a_np^n+a_{n-1}p^{n-1}q+\cdots+a_0q^n|}{q^n}\ge \dfrac{1}{q^n}$
故$|\omega-\dfrac{p}{q}|=\dfrac{|f(\dfrac{p}{q})|}{|f^{'}(\eta)|}>\dfrac{1}{Cq^n}$
若$\dfrac{p}{q}\notin[\omega-1,\omega+1]$时
$|\omega-\dfrac{p}{q}|>1\ge\dfrac{1}{Cq^n}$
注:
Liouville 定理:任意$n$次实代数数不能有$n$次以上的有理渐进分数.
即:若是一个$n$次代数数,则对任意$\epsilon>0,A>0$,不等式
$$|\omega-\dfrac{p}{q}|<\dfrac{A}{q^{n+\epsilon}}$$的整数解$(p,q)$的个数有限.
注:若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{2q^2}$
注:(Hruwitz)若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{\sqrt{5}q^2}$,这里的$\sqrt{5}$是最佳的。
MT【286】最佳有理逼近的更多相关文章
- 2016 最佳 Linux 发行版排行榜
2015年,不管在企业市场还是个人消费市场都是 Linux非常重要的一年.作为一个自2005年起就开始使用 Linux的 Linuxer ,我门见证了 Linux在过去十年的成长.2016 Linux ...
- 《开源安全运维平台OSSIM最佳实践》
<开源安全运维平台OSSIM最佳实践> 经多年潜心研究开源技术,历时三年创作的<开源安全运维平台OSSIM最佳实践>一书即将出版.该书用80多万字记录了,作者10多年的IT行业 ...
- 12款最佳的 WordPress 语法高亮插件推荐
语法高亮工具增强了代码的可读性,美化了代码,让程序员更容易维护.语法高亮提供各种方式由以提高可读性和文本语境,尤其是对于其中可以结束跨越多个页面的代码,以及让开发者自己的程序中查找错误.在这篇文章中, ...
- java开发3轮技术面+hr面 面经(MT)
一直没打理博客园 发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37 ...
- Linux和类Unix系统上5个最佳开源备份工具
一个好的备份最基本的目的就是为了能够从一些错误中恢复: 人为的失误 磁盘阵列或是硬盘故障 文件系统崩溃 数据中心被破坏等等. 所以,我为大家罗列了一些开源的软件备份工具. 当为一个企业选择备份工具的时 ...
- 类Unix上5个最佳开源备份工具 Bacula/Amanda/Backupninja/Backuppc/UrBackup
当为一个企业选择备份工具的时候,你都考虑什么呢? 确定你正在部署的软件具有下面的特性 开源软件 – 你务必要选择那些源码可以免费获得,并且可以修改的软件.确信可以恢复你的数据,即使是软件供应商/项目停 ...
- Android和PHP开发最佳实践
Android和PHP开发最佳实践 <Android和PHP开发最佳实践>基本信息作者: 黄隽实丛书名: 移动应用开发技术丛书出版社:机械工业出版社ISBN:9787111410508上架 ...
- iOS应用开发最佳实践
<iOS应用开发最佳实践> 基本信息 作者: 王浩 出版社:电子工业出版社 ISBN:9787121207679 上架时间:2013-7-22 出版日期:2013 年8月 开本:16 ...
- Linux 和类 Unix 系统上5个最佳开源备份工具
转载:http://linux.cn/article-4623-weixin.html#rd?sukey=cbbc36a2500a2e6cb7678c4d38b691a9fa7403b259f898e ...
随机推荐
- hdu3790 dijkstra+堆优化
题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=3790 分析:dijkstra没有优化的话,复杂度是n*n,优化后的复杂度是m*logm,n是顶点数,m ...
- js原生实现div渐入渐出
jq对渐入渐出进行封装,简单的使用连个方法就可以实现.fadeIn(),fadeOut();如果我们界面没有使用jq那么原生怎么实现呢? 我们讲解一下,这个原理.当我们要实现渐入的时候,首先是让隐藏的 ...
- [转帖]Docker save and load镜像保存
Docker save and load镜像保存 https://www.cnblogs.com/zhuochong/p/10064350.html docker save 和 load 以及 imp ...
- python爬虫scrapy之downloader_middleware设置proxy代理
一.背景: 小编在爬虫的时候肯定会遇到被封杀的情况,昨天爬了一个网站,刚开始是可以了,在settings的设置DEFAULT_REQUEST_HEADERS伪装自己是chrome浏览器,刚开始是可以的 ...
- 新版本macos无法安装mysql-python包
在更新了macos之后就发现无法正确安装python-mysql包了. 上网查阅了一下应该是c库或者osx的基础工具变动带来的问题.看到很多解决办法说使用pymysql,拜托我问的是如何安装pytho ...
- Golang的Json encode/decode以及[]byte和string的转换
使用了太长时间的python,对于强类型的Golang适应起来稍微有点费力,不过操作一次之后发现,只有这么严格的类型规定,才能让数据尽量减少在传输和解析过程中的错误.我尝试使用Golang创建了一个公 ...
- HTML5 & tel & make a phone call
HTML5 & tel & make a phone call 咋呼叫呀,网页怎么打电话? { key: "exploreCorpPhone", title: &q ...
- PHPCMS的使用
1.下载安装phpcms 下载完后解压将install_packages上传到服务器并重命名为phpcms_test: 更改目录文件系统权限: chmod -R 777 phpcms_test 配置n ...
- LODOP.FORMAT格式转换【回调和直接返回值】
Lodop中有一些格式转换函数,这些函数和其他众多函数一样,c-lodop需要使用回调函数On_Return返回,Lodop插件方式直接返回,通常混合部署,写法要兼容两个控件.可以用if (LODOP ...
- ASP.Net Post方式获取数据流的一种简单写法
public static string PostWebReq(string PostUrl, string ParamData, Encoding DataEncode) { ...