2017北大优秀中学生夏令营
已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根,

求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p}{q}|\ge \dfrac{C}{q^2}$$

分析:这题涉及的背景知识是数论里的最佳有理逼近和Liouville超越数定理.
一般的$\omega $是整系数方程$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0$的一个根,
则显然存在$C=C(\omega)=\max\{\dfrac{1}{q^n},n*\max\limits_{k=1,2,\cdots,n}|ka_k^{k-1}|\}$,
当$\omega-1<x<\omega+1$ 时$|f^{'}(x)|=|na_nx^{n-1}+\cdots+a_1|<C$,故
若$\dfrac{p}{q}\in[\omega-1,\omega+1]$时
由拉格朗日中值定理$f(\dfrac{p}{q})-f(\omega)=(\dfrac{p}{q}-\omega)f^{'}(\eta)$
又$f|(\dfrac{p}{q})|=\dfrac{|a_np^n+a_{n-1}p^{n-1}q+\cdots+a_0q^n|}{q^n}\ge \dfrac{1}{q^n}$
故$|\omega-\dfrac{p}{q}|=\dfrac{|f(\dfrac{p}{q})|}{|f^{'}(\eta)|}>\dfrac{1}{Cq^n}$
若$\dfrac{p}{q}\notin[\omega-1,\omega+1]$时
$|\omega-\dfrac{p}{q}|>1\ge\dfrac{1}{Cq^n}$

注:

Liouville 定理:任意$n$次实代数数不能有$n$次以上的有理渐进分数.
即:若是一个$n$次代数数,则对任意$\epsilon>0,A>0$,不等式
$$|\omega-\dfrac{p}{q}|<\dfrac{A}{q^{n+\epsilon}}$$的整数解$(p,q)$的个数有限.

注:若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{2q^2}$

注:(Hruwitz)若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{\sqrt{5}q^2}$,这里的$\sqrt{5}$是最佳的。

MT【286】最佳有理逼近的更多相关文章

  1. 2016 最佳 Linux 发行版排行榜

    2015年,不管在企业市场还是个人消费市场都是 Linux非常重要的一年.作为一个自2005年起就开始使用 Linux的 Linuxer ,我门见证了 Linux在过去十年的成长.2016 Linux ...

  2. 《开源安全运维平台OSSIM最佳实践》

    <开源安全运维平台OSSIM最佳实践> 经多年潜心研究开源技术,历时三年创作的<开源安全运维平台OSSIM最佳实践>一书即将出版.该书用80多万字记录了,作者10多年的IT行业 ...

  3. 12款最佳的 WordPress 语法高亮插件推荐

    语法高亮工具增强了代码的可读性,美化了代码,让程序员更容易维护.语法高亮提供各种方式由以提高可读性和文本语境,尤其是对于其中可以结束跨越多个页面的代码,以及让开发者自己的程序中查找错误.在这篇文章中, ...

  4. java开发3轮技术面+hr面 面经(MT)

    一直没打理博客园  发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37 ...

  5. Linux和类Unix系统上5个最佳开源备份工具

    一个好的备份最基本的目的就是为了能够从一些错误中恢复: 人为的失误 磁盘阵列或是硬盘故障 文件系统崩溃 数据中心被破坏等等. 所以,我为大家罗列了一些开源的软件备份工具. 当为一个企业选择备份工具的时 ...

  6. 类Unix上5个最佳开源备份工具 Bacula/Amanda/Backupninja/Backuppc/UrBackup

    当为一个企业选择备份工具的时候,你都考虑什么呢? 确定你正在部署的软件具有下面的特性 开源软件 – 你务必要选择那些源码可以免费获得,并且可以修改的软件.确信可以恢复你的数据,即使是软件供应商/项目停 ...

  7. Android和PHP开发最佳实践

    Android和PHP开发最佳实践 <Android和PHP开发最佳实践>基本信息作者: 黄隽实丛书名: 移动应用开发技术丛书出版社:机械工业出版社ISBN:9787111410508上架 ...

  8. iOS应用开发最佳实践

    <iOS应用开发最佳实践> 基本信息 作者: 王浩    出版社:电子工业出版社 ISBN:9787121207679 上架时间:2013-7-22 出版日期:2013 年8月 开本:16 ...

  9. Linux 和类 Unix 系统上5个最佳开源备份工具

    转载:http://linux.cn/article-4623-weixin.html#rd?sukey=cbbc36a2500a2e6cb7678c4d38b691a9fa7403b259f898e ...

随机推荐

  1. B. Switches and Lamps

    链接 [https://codeforces.com/contest/985/problem/B] 题意 给你n,m,分别是n个开关,m个灯 给一个n*m的字符矩阵aij=1,表示i可以控制j这个灯 ...

  2. Magic Stones CodeForces - 1110E (思维+差分)

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  3. Day1 Numerical simulation of optical wave propagation之标量衍射理论基本原理(一)

    <Numerical simulation of optical  wave propagation>内容 1. 介绍光波传输的基础理论.离散采样方法.基于MATLAB平台的编码实例以及具 ...

  4. 持续集成之Jenkins自动部署war包到远程服务器

    一.无war包链接的情况 无war包链接时,需先下载war包到本地,然后执行: ---------------------------------------------以下部分为转载-------- ...

  5. spring datasource jdbc 密码 加解密

    spring datasource 密码加密后运行时解密的解决办法 - 一号门-程序员的工作,程序员的生活(java,python,delphi实战)http://www.yihaomen.com/a ...

  6. Linux查看和注销用户(User)

    Linux如何注销其他用户?_Linux教程_Linux公社-Linux系统门户网站https://www.linuxidc.com/Linux/2012-07/64939.htm linux注销指定 ...

  7. opencv2\flann\matrix.h(69): error C2059: 语法错误:“,”

    在提示错误的matrix.h头文件中,修改一下,在free前加上_ ,即FLANN_DEPRECATED void _free() .

  8. CMake--模块的使用和自定义模块

    1.链接外部库 如果程序中使用了外部库,事先并不知道它的头文件和链接库的位置,就要给出头文件和链接库的查找方法,并将他们链接到程序中. FIND_PACKAGE(<name> [major ...

  9. linux关闭触摸板

    关闭触摸板 sudo modprobe -r psmouse 如果打开触摸板就是: sudo modprobe psmouse

  10. HDU 5782 Cycle —— KMP

    题目:Cycle 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5782 题意:给出两个字符串,判断两个字符串的每一个前缀是否循环相等(比如abc 和 ca ...