11/1/2018模拟 Max
题面


也就是说, 随机序列RMQ.(\(n \le 8388608\), \(m \le 8*10^6\))
解法
我写了笛卡尔树+tarjan
然而听神仙说, 因为数据随机, 建完树暴力找lca就行, 跑的飞快...吊打std...
还有题解, 真是神仙做法...
设 \(p_i\) 表示比 \(a_i\) 大的前一个数所在的位置,那么 p 构成了一棵树。
若我们需要查询 [l, r] 的答案,只需找到 r 在这棵树上不小于 l 的祖先。于是我们可以按照 l
从大到小排序,一边向上查询祖先一边路径压缩(类似并查集)。
由于树上的每条边至多被压缩一次,复杂度 O(n) 。
我的代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
int n,m;
int gen,p1,p2;
int number(){
gen=(1LL*gen*p1)^p2;
return (gen&(n-1))+1;
}
const int nsz=8388700;
int a[nsz],ans[nsz];
struct tnd{int ch[2];}car[nsz];
int rt,pc=0;
int stk[nsz],top=0;
void build(){
rep(i,1,n){
while(top&&a[stk[top]]<a[i])car[i].ch[0]=stk[top--];
car[stk[top]].ch[1]=i;
stk[++top]=i;
}
rt=stk[1],pc=n;
}
struct tq{int t,pr;}qu[nsz*2];
int hd[nsz],pq=1;
void adde(int f,int t){qu[++pq]=(tq){t,hd[f]};hd[f]=pq;}
void adddb(int f,int t){adde(f,t);adde(t,f);}
int fa[nsz];
void init(){rep(i,1,n)fa[i]=i;}
void merge(int a,int b){fa[b]=a;}
int find(int p){return p==fa[p]?p:fa[p]=find(fa[p]);}
int vi[nsz];
void tar(int p){
vi[p]=1;
int v;
rep(i,0,1){
v=car[p].ch[i];
if(v==0)continue;
tar(v);
merge(p,v);
}
for(int i=hd[p];i;i=qu[i].pr){
if(vi[qu[i].t])
ans[i/2]=find(qu[i].t);
}
}
int main() {
// freopen("max.in", "r", stdin);
// freopen("max.out", "w", stdout);
scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &p1, &p2);
for (int i = 1; i <= n; ++i)
a[i] = number();
int l,r;
for (int i = 1; i <= m; ++i) {
l = number(), r = number();
if (l > r) swap(l,r);
adddb(l,r);
}
build();
init();
tar(rt);
ll sum = 0;
for (int i = 1; i <= m; ++i) {
sum=(sum+a[ans[i]])%p2;
}
sum=sum*p1%p2;
printf("%lld\n", sum);
}
std:
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int N = 1e7 + 5;
int n, m;
int gen, cute1, cute2;
int number() {
gen = (1LL * gen * cute1) ^ cute2;
return (gen & (n - 1)) + 1;
}
int hd[N], nxt[N], id[N], to[N], cnt;
int ans[N], a[N], p[N], q[N];
int add(int x, int y, int i) {
++cnt;
nxt[cnt] = hd[x];
to[cnt] = y;
id[cnt] = i;
hd[x] = cnt;
}
int getfa(int x, int y) {
int fa = x;
for (int i = x; i; i = p[i])
if (p[i] < y || p[i] == i) {
fa = i;
break;
}
for (int j, i = x; i != fa; i = j) {
j = p[i], p[i] = fa;
}
return fa;
}
int main() {
freopen("max.in", "r", stdin);
freopen("max.out", "w", stdout);
scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &cute1, &cute2);
for (int i = 1; i <= n; ++i)
a[i] = number();
for (int i = 1; i <= m; ++i) {
int l = number(), r = number();
if (l > r) swap(l, r);
add(l, r, i);
}
double t1;
fprintf(stderr, "%lf\n", t1 = (double)clock()/CLOCKS_PER_SEC);
int ind = 0;
for (int i = 1; i <= n; ++i) {
while (ind && a[q[ind]] <= a[i]) --ind;
if (ind) p[i] = q[ind];
else p[i] = i;
q[++ind] = i;
}
for (int i = n; i; --i) {
for (int j = hd[i]; j; j = nxt[j])
ans[id[j]] = a[getfa(to[j], i)];
}
fprintf(stderr, "%lf\n", (double)clock()/CLOCKS_PER_SEC - t1);
int sum = 0;
for (int i = 1; i <= m; ++i)
(sum += 1LL * ans[i] * cute1 % cute2) %= cute2;
printf("%d\n", sum);
}
11/1/2018模拟 Max的更多相关文章
- 11/5/2018模拟 Problem C
题面 题解 我有特殊的哈希技巧 以到下一个相同字符的距离为值哈希, 如果不存在或在串外, 就是 \(|T| + 1\). 加入一个新字符 \(S_i\) 时, 同时修改它上一次出现时的值, 由 \(| ...
- 11.7 NOIP模拟赛
目录 2018.11.7 NOIP模拟 A 序列sequence(two pointers) B 锁lock(思路) C 正方形square(埃氏筛) 考试代码 B C 2018.11.7 NOIP模 ...
- 11/1 NOIP 模拟赛
11.1 NOIP 模拟赛 期望得分:50:实际得分:50: 思路:暴力枚举 + 快速幂 #include <algorithm> #include <cstring> #in ...
- 2018.11.6 PION 模拟赛
期望:100 + 40 + 50 = 190 实际:60 + 10 + 50 = 120 考得好炸啊!!T1数组开小了炸掉40,T2用 int 读入 long long ,int存储 long lon ...
- 2018.11.5 PION模拟赛
期望:30 + 40 + 50 = 120 实际:30 + 50 + 40 = 120 ‘’ 思路:最重要的是发现 是完全没有用的,然后这个题目就可以转成DP来做. /* 期望的分:30 */ #in ...
- 2018 11.1 PION 模拟赛
期望:250 100+100+50 实际:210 80+100+30 期望:100 实际:80 最后:两个点T了.可能是求逆元的方法太慢了,也可能是闲的又加了一个快速乘的原因. #inclu ...
- 2018.11.08 NOIP模拟 班车(倍增+dfs+bit)
传送门 对于每个点离线处理出向上走2i2^i2i班车到的最上面的点. 然后每个询问(u,v)(u,v)(u,v)先把(u,v)(u,v)(u,v)倍增到刚好走不到lcalcalca的情况(有一个点如果 ...
- 2018.11.08 NOIP模拟 水管(简单构造)
传送门 仔细读题会发现只要所有点点权之和等于0一定有解. 如何构造? 直接当做树来构造就行了,非树边都赋值成0就行. 代码
- 2018.11.08 NOIP模拟 景点(倍增+矩阵快速幂优化dp)
传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. ...
随机推荐
- 1、话说linux内核
1.内核和发行版的区别 到底什么是操作系统 linux.windows.android.ucos就是操作系统 操作系统本质上是一个程序,由很多个源文件构成,需要编译连接成操作系统程序(vmlinz.z ...
- CF741 D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
题目意思很清楚了吧,那么我们从重排回文串的性质入手. 很容易得出,只要所有字符出现的次数都为偶数,或者有且只有一个字符出现为奇数就满足要求了. 然后想到什么,Hash?大可不必,可以发现字符\(\in ...
- Spring MVC 5 + Thymeleaf 基于Java配置和注解配置
Spring MVC 5 + Thymeleaf 注解配置 Spring的配置方式一般为两种:XML配置和注解配置 Spring从3.0开始以后,推荐使用注解配置,这两种配置的优缺点说的人很多,我就不 ...
- 深入理解[Master-Worker模式]原理与技术
Master-Worker模式是常用的并行模式之一.它的核心思想是,系统由两类进程协作工作:Master进程和Worker进程.Master进程负责接收和分配任务,Worker进程负责处理子任务.当各 ...
- Feign性能优化注意事项
一.FeignClient注解 FeignClient注解被@Target(ElementType.TYPE)修饰,表示FeignClient注解的作用目标在接口上 @FeignClient(name ...
- 007-迅雷定时重启AutoHotkey脚本-20190411
;; 定时重启迅雷.ahk,;;~ 2019年04月11日;#SingleInstance,forceSetWorkingDir,%A_ScriptDir%DetectHiddenWindows,On ...
- A4纸尺寸 web打印报告
A4纸对应的像素尺寸: <style> @media print { .Noprn{ display:none;} .print-hidden { display: none !impor ...
- 在k-means或kNN,我们是用欧氏距离来计算最近的邻居之间的距离。为什么不用曼哈顿距离?
曼哈顿距离只计算水平或垂直距离,有维度的限制.另一方面,欧氏距离可用于任何空间的距离计算问题. 因为,数据点可以存在于任何空间,欧氏距离是更可行的选择.例如:想象一下国际象棋棋盘,象或车所 做的移动是 ...
- jconsole & jvisualvm远程监视websphere服务器JVM的配置案
jconsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请.释放等动作,将内存管理的所有信息进行统计.分析.可视化.我们可以根据这些信息判断程序是否有内存泄漏问题. 使用jco ...
- PAT L2-020 功夫传人
https://pintia.cn/problem-sets/994805046380707840/problems/994805059118809088 一门武功能否传承久远并被发扬光大,是要看缘分 ...