【P2303】Longge的问题
题目大意:求$$\sum\limits_{i=1}^ngcd(n,i)$$
题解:发现 gcd 中有很多是重复的,因此考虑枚举 gcd。
\]
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
#define debug(x) printf("x = %d\n",x)
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
//const int maxn=
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/
ll n;
inline ll phi(ll x){
ll ret=x;
for(int i=2;i<=sqrt(x);i++){
if(x%i==0){
ret=ret/i*(i-1);
while(x%i==0)x/=i;
}
}
if(x>1)ret=ret/x*(x-1);
return ret;
}
ll calc(ll x){
ll ret=0;
for(int i=1;i<=sqrt(x);i++){
if(x%i==0){
ret+=(ll)i*phi(x/i);
if(i*i!=x)ret+=(ll)x/i*phi(i);
}
}
return ret;
}
void read_and_parse(){
n=read();
}
void solve(){
printf("%lld\n",calc(n));
}
int main(){
read_and_parse();
solve();
return 0;
}
【P2303】Longge的问题的更多相关文章
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- P2303 [SDOi2012]Longge的问题
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- luogu P2303 [SDOi2012]Longge的问题
传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- 【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)
题目链接 题意:求\(\sum_{i=1}^{n}\gcd(i,n)\) 首先可以肯定,\(\gcd(i,n)|n\). 所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数. 那 ...
- P2303 [SDOI2012]Longge的问题 我傻QwQ
莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...
随机推荐
- spring的xml配置里,最好不要配置xsd的版本名称
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- flutter中使用svg
dependencies: flutter_svg: ^0.12.1 flutter packages get import 'package:flutter_svg/flutter_svg.dart ...
- hadoop的缺点
Hadoop的限制 Hadoop只能执行批量处理,并且只以顺序方式访问数据.这意味着必须搜索整个数据集,即使是最简单的搜索工作.
- linode上切换Linux到FreeBSD
PS:不是真正的无缝切换,数据需要自己备份.还原. Linode官方给出了一篇文章:https://www.linode.com/docs/tools-reference/custom-kernels ...
- SQL Server 一张图让你秒懂联合表查询
- Qt5 入门
main()函数中第一句是创建一个QApplication类的实例. 对于 Qt 程序来说,main()函数一般以创建 application 对象(GUI 程序是QApplication,非 GUI ...
- memcached安装报错 error while loading shared libraries: libevent-2.0.so.5: cannot open shared object file: No such file or directory解决
我是从其他服务器scp来的memcached(~~~整个文件夹的那种,windows用多了的后遗症) 在准备运行 ./memcached -d -u root -l localhost -m 800 ...
- Java虚拟机构建对象过程小记
Java对象的内存分布 Java对象的构建 Java程序中,新建对象,除了常见的new语句之外,还可以通过反射机制.Object.clone方法.反序列化以及Unsafe.allocateInstan ...
- OneinStack——PHP多版本共存
前言 我事先安装的是LNMP环境,PHP版本为7.2,但是现在环境需要一个PHP5.6,所以就准备安装个上版本,顺带写个安装教程,写完后我发现了原来有直接安装的命令!所以后面的内容大家可以忽略了!从配 ...
- The Unique MST POJ - 1679 次小生成树prim
求次小生成树思路: 先把最小生成树求出来 用一个Max[i][j] 数组把 i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过 把没有使用过的一条边加 ...