题目大意

给你一个 \(n\) 个点,\(m\) 条边的有向图,每条边有一个权值 \(w_i\) ,每个节点有一个权值 \(a_i\) 。

你从节点 \(1\) 出发,每经过一个节点就可以获得该点的权值 \(a_i\) (起始点也可以获得,每个节点可以重复获得),问你经过的边权和恰好为 \(T\) 时,能获得的最大(点)权值和。

同时,题目还给出 \(k\) 个特殊条件,如果你在到达第 \(x_i\) 个节点时经过的边权和恰好为 \(t_i\) ,那么你就可以额外获得 \(y_i\) 的权值。

题解

我们可以观察题目数据范围:

对于所有测试点:

\(1≤n≤50\),\(n \leq m \leq 501\),\(0 \leq k \leq 200\),\(1 \leq t_i \leq T \leq 10^9\)。

\(1\leq wi \leq 5\),\(1 \leq c_i \leq 52501\),\(1 \leq u_i, v_i, x_i \leq n\),\(1 \leq y_i \leq 10^9\)。

发现每条边的边权不超过 \(5\) ,又考虑到我们需要恰好经过的边权为 \(T\) ,所以我们可以通过将边拆成点,同时建一个 \(floyd\) 矩阵,我们就可以利用矩阵快速幂来解决这个问题了。

但是我们发现还有一些特殊情况需要处理,我们可以考虑分段,每一段中间用矩阵快速幂,每一个相应的特殊情况给对应的位置添加值。

这样的复杂度是 $ O(125n^3k~logT)$ ,肯定是不行的,所以我们考虑优化。

由于我们每一次乘上的矩阵都是一样的,所以我们考虑预处理 \(2^k\) 的矩阵幂,然后每一个段都用类似于倍增的方式去处理。

这样的复杂度是 \(O(25~n^2~k~logT+125~n^3~logT)\) ,是可以接受的。

以上。

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=55,M=505,K=205;
int n,m,t,k;
int u,v,w;
int a[N],ksm[35];
struct Matrix
{
int n,m;
int h[N*5][N*5];
Matrix() {n=m=0,memset(h,-1,sizeof(h));}
void print()
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
printf("%lld ",h[i][j]);
printf("\n");
}
printf("\n");
}
}res[35],sta;
Matrix operator*(const Matrix a,const Matrix b)
{
Matrix ans;
ans.n=a.n,ans.m=b.m;
for(int i=1;i<=ans.n;++i)
{
for(int j=1;j<=ans.m;++j)
{
for(int k=1;k<=a.m;++k)
{
if(a.h[i][k]>=0&&b.h[k][j]>=0)
ans.h[i][j]=max(ans.h[i][j],a.h[i][k]+b.h[k][j]);
}
}
}
return ans;
}
struct Festival {int t,x,y;}s[K];
bool cmp(Festival a,Festival b) {return a.t<b.t;};
signed main()
{
// freopen("delicacy.in","r",stdin);
// freopen("delicacy.out","w",stdout);
cin>>n>>m>>t>>k;
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]);
res[0].n=res[0].m=n*5;
for(int i=1;i<=n*5;++i)
{
if(i/5==(i-1)/5)
res[0].h[i][i+1]=0;
}
for(int i=1;i<=m;++i)
scanf("%lld%lld%lld",&u,&v,&w),
res[0].h[(u-1)*5+w][(v-1)*5+1]=a[v];
for(int i=1;i<=32;++i)
res[i]=res[i-1]*res[i-1];
sta.n=1,sta.m=n*5;
sta.h[1][1]=a[1];
for(int i=1;i<=k;++i)
scanf("%lld%lld%lld",&s[i].t,&s[i].x,&s[i].y);
sort(s+1,s+1+k,cmp);
ksm[0]=1;
for(int i=1;i<=32;++i)
ksm[i]=(ksm[i-1]<<1);
int tmp=0;
for(int i=1;i<=k;++i)
{
for(int j=32;j>=0;--j)
{
if(tmp+ksm[j]<=s[i].t)
tmp+=ksm[j],sta=sta*res[j];
}
if(sta.h[1][(s[i].x-1)*5+1]>=0)
sta.h[1][(s[i].x-1)*5+1]+=s[i].y;
}
for(int i=32;i>=0;--i)
{
if(tmp+ksm[i]<=t)
tmp+=ksm[i],sta=sta*res[i];
}
printf("%lld\n",sta.h[1][1]);
return 0;
}

P6772 [NOI2020]美食家的更多相关文章

  1. 洛谷 P6772 - [NOI2020]美食家(广义矩阵快速幂)

    题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,第 \(0\) 天的时候你在 \(1\) 号城市,第 \(T\) 天的时候你要回到 \(1\) 号城市. 每条边上的边权表示从城 ...

  2. [XIN算法应用]NOI2020美食家

    XIN(\(updated 2021.6.4\)) 对于很多很多的题目,发现自己并不会之后,往往会直接冲上一个XIN队算法,然而,这样 \(\huge{\text{鲁莽}}\) 的行为只能获得 TLE ...

  3. [NOI2020]美食家 题解

    题意分析 给出一个带权有向图,要求从节点 $1$ 出发,经过恰好 $T$ 的边权和,回到节点 $1$ ,求可经过的最大点权和.特别地,经过的边权和达到部分特殊数时,会有某个点的点权发生改变. 思路分析 ...

  4. [NOI2020] 美食家

    很好,自己会做NOI签到题了,去年只要会这题,再多打点暴力,\(Ag\)到手,希望今年\(NOI\)同步赛过\(Ag\)线吧,得有点拿得出手的成绩证明啊. 考虑\(T\)非常大,\(n\)又很小. 想 ...

  5. 【NOI2020】美食家(矩阵)

    Description 给定一张有向图,\(n\) 个顶点,\(m\) 条边.第 \(i\) 条边从 \(u_i\) 到 \(v_i\),走完该边的用时为 \(w_i\).每一个点有一个价值 \(c\ ...

  6. XIN队算法

    XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...

  7. BZOJ 1691: [Usaco2007 Dec]挑剔的美食家 [treap 贪心]

    1691: [Usaco2007 Dec]挑剔的美食家 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 786  Solved: 391[Submit][S ...

  8. [BZOJ1691][Usaco2007 Dec]挑剔的美食家

    [BZOJ1691][Usaco2007 Dec]挑剔的美食家 试题描述 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了. ...

  9. BZOJ 1691: [Usaco2007 Dec]挑剔的美食家( 平衡树 )

    按鲜嫩程度排个序, 从大到小处理, 用平衡树维护价值 ---------------------------------------------------------------------- #i ...

随机推荐

  1. 编译一个支持多线程的php安装包

    前言 因为项目上的需要,需要用到php,一般来说,用默认的版本和配置就可以满足大多数的场景,因为需要加入多线程,所以需要自己编译一个包 一般来说,发行的包的版本的配置选项和代码都是最稳定的,所以在大多 ...

  2. ubuntu13.04修改默认启动内核

    ubuntu下面的启动内核选项跟其他操作系统不一样,有个子菜单,比如我在默认的ubuntu13.04上安装了一个新的内核3.14.5,那么默认的第一项是3.14.5内核,第二项是一个子菜单,第二项里面 ...

  3. window.frames["id"].location使用

    由于最近需要维护一个老项目不得不去学习一些自己都没接触过的项目,老项目中虽然技术已经被淘汰,但是思想还是值得去学习探究的,无论是jsp,freemarker,freemarker这些模板引擎还是Vue ...

  4. Python 调用接口添加头信息

    import requests,jsonurl = 'http://47.108.115.193:9000/tb-store/store/getWechatAppHome'header={" ...

  5. FL Studio杂项设置页讲解(上)

    今天我们来看一下FL Studio通道设置窗口中的杂项设置页面.该页面存在于FL Studio绝大多数的通道中,我们可以通过它来设置一些发生器或者第三方插件的参数,接下来就让我们一起来学习下这些参数的 ...

  6. Folx好用的下载功能介绍

    Folx作为一款使用便捷的Mac系统下载软件,为用户提供了网页链接捕获.种子文件下载.智能标签等功能,而其Folx专业版更为用户提供了智能控制速度.计划下载任务.种子文件搜索下载等更加智能化的功能. ...

  7. spring中的事务传播机制

    1.事务的实现思想 在spring中要想某个方法具有事务,只要在方法前加一个@Transactional注解.然后spring就会利用aop思想,在这个方法执行前开启事务, 在方法执行后选择提交事务或 ...

  8. python 如何跳过异常继续执行

    使用try...except...语句,类似于if...else...,可以跳过异常继续执行程序,这是Python的优势 用法如下: 1 2 3 4 5 6 try:            # 可能会 ...

  9. zabbix agent 编译安装

    zabbix 安装包下载地址 https://www.zabbix.com/download 解压好之后进入zabbix目录 执行编译安装 ./configure --prefix=/usr/loca ...

  10. C#6,C#7,V#8,C#9 的新特性总结

    看了一下,下图的所有我都有用过,感觉越高的版本越好用. C# 6.0 特性 C# 7.0  Vs2017 C# 8.0     .net core 3.0+ C#9.0 .net5 C#的各种语法糖, ...