LINK:CF321E Ciel and Gondolas

很少遇到这么有意思的题目了。虽然很套路。。

容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i,j)\)

暴力显然不太行 不过暴力枚举决策的话 可以预处理前缀和线性推出。

显然想要优化决策的话第一步就需要O(1)求出\(cost(i,j)\)

经过画图 可以发现预处理出\(g[i][j]\)表示从\((1,1)\)到\((i,j)\)这个矩形中的点值和 和 \(sum_i\)表示\((1,1)\)到\((i,i)\)的点值和 就可以O(1)求值了。

观察dp转移式发现这是典型的四边形不等式优化dp 套用决策单调性 复杂度\(n\cdot k\cdot logn\)

强制k段 显然可以Wqs二分来解除限制 不过这样不太能分治做了 需要采用单调队列来做。

但存在一个问题 可能有mid的时候为k-1 mid+1的时候为k+1.

关于这个问题 通过值相等的时候分段多的方法来使上面情况合法化 最终尽管可能>=k的但是仍然可以构造出等于k的情况。

如果是小数二分的话显然不必要 因为可以精确到固定的点。

所以总复杂度\(n\cdot logMx \cdot logn\)

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
return x*f;
}
const int MAXN=4010,G=3;
int n,k,l,r;
ll f[MAXN];
int sum[MAXN],pre[MAXN][MAXN];
int c[MAXN][MAXN],cnt[MAXN];
struct wy{int l,r,x;}q[MAXN];
inline int cost(int i,int j)
{
return (sum[j]-c[i-1][j]*2+sum[i-1])>>1;
}
inline int pd(int x,int y,int z)
{
if(f[x]+cost(x+1,z)<f[y]+cost(y+1,z))return 0;
if(f[x]+cost(x+1,z)==f[y]+cost(y+1,z))return cnt[x]<cnt[y];
return 1;
}
inline int calc(wy a,int x)
{
int l=a.l,r=a.r+1;
while(l<r)
{
int mid=(l+r)>>1;
if(pd(a.x,x,mid))r=mid;
else l=mid+1;
}
return r;
}
inline void calc(int x)
{
q[l=r=1]=(wy){1,n,0};
rep(1,n,i)
{
while(l<r&&q[l].r<i)++l;
int w=q[l].x;++q[l].l;
f[i]=f[w]+cost(w+1,i)+x;cnt[i]=cnt[w]+1;
if(pd(q[r].x,i,n))
{
while(l<=r&&pd(q[r].x,i,q[r].l))--r;
if(l>r){q[++r]=(wy){i+1,n,i};continue;}
int w=calc(q[r],i);
q[r].r=w-1;q[++r]=(wy){w,n,i};
}
}
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(k);
rep(1,n,i)
{
rep(1,n,j)
{
int get(x);
pre[i][j]=pre[i][j-1]+x;
c[i][j]=c[i-1][j]+pre[i][j];
}
sum[i]=sum[i-1]+(pre[i][i]<<1);
}
int l=0,r=(sum[n]>>1)+1;
while(l+1<r)
{
int mid=(l+r)>>1;
calc(mid);
if(cnt[n]>=k)l=mid;
else r=mid;
}
calc(r);
if(cnt[n]>=k)l=r;else calc(l);
putl(f[n]-k*l);return 0;
}

CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性的更多相关文章

  1. 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)

    [BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...

  2. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  3. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  4. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  5. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  6. CodeForces - 321E:Ciel and Gondolas (四边形不等式优化DP)

    题意:N个人排成一行,分成K组,要求每组的不和谐值之和最小. 思路:开始以为是斜率优化DP,但是每个区间的值其实已经知道了,即是没有和下标有关的未知数了,所以没必要用斜率. 四边形优化. dp[i][ ...

  7. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  8. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

  9. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

随机推荐

  1. sass安装与教程

    首先下载ruby http://dlsw.baidu.com/sw-search-sp/soft/ff/22711/rubyinstaller_V2.2.2.95_setup.1439890355.e ...

  2. 「疫期集训day8」 雪原

    可恶的红军,他们嘴上说着以人民为中心,被地里烧杀强掠同族人----为我们祝福吧,伟大的母亲河,为了沙皇------窝瓦河(伏尔加河)中坚守的俄罗斯白军 又是考爆的一天,然俄前两题都该A的.T1签到题一 ...

  3. 「疫期集训day5」火焰

    我们就像一把穿刺敌人的利刃,把敌人开肠破肚----凡尔登高地前气势汹汹的德军 今天没有考试,挺好,有时间自己做题了 今天主要复习+学习了数据结构,列了个表: 已完成:单调队列,线段树,set/vect ...

  4. iOS应用千万级架构:MVVM框架

    业务模块内的MVC和MVVM架构 目前,唯品会中MVC和MVVM架构并存,后期会偏重于MVVM架构的使用. MVC架构 Model:程序中要操纵的实际对象的抽象,为Controller提供经过抽象的业 ...

  5. 【Hack.lu-2017】FlatScience

    信息: 题目来源:Hack.lu-2017 标签:SQL注入.源码泄露 解题过程 题目页面有多层,存在许多pdf文件,首先进行目录扫描: [TIME] => 2020-07-07 16:08:5 ...

  6. Centos7:python 安装。yum安装软件提示 cannot find a valid baseurl for repobase7x86_64

    方法一.   1.打开 vi /etc/sysconfig/network-scripts/ifcfg-enp4s0(每个机子都可能不一样,但格式会是“ifcfg-e...”).但内容包含: < ...

  7. .NET Core 微服务—API网关(Ocelot) 教程 [一]

    前言: 最近在关注微服务,在 eShop On Containers 项目中存在一个API网关项目,引起想深入了解下它的兴趣. 一.API网关是什么 API网关是微服务架构中的唯一入口,它提供一个单独 ...

  8. 前端框架-jQuery自学笔记

    What's jQuery jq就是一个封装了很多方法的js库. Why use jQuery 原生js的缺点 不能添加多个入口函数(window.onload),如果添加多个,后面会把前面的覆盖 a ...

  9. Ethical Hacking - GAINING ACCESS(24)

    CLIENT SIDE ATTACKS - Detecting Trojan manually or using a sandbox Analyzing trojans Check the prope ...

  10. socket链接

    服务端: package com.batch.service.impl; import java.io.BufferedReader; import java.io.BufferedWriter; i ...