题目大意:有$n$个点,问有多少种连成生成树的方案。

题解:根据$prufer$序列可得,$n$个点的生成树有$n^{n-2}$个,每种生成树有$(n-1)!$种生成方案,所以答案是$n^{n-2}(n-1)!$

卡点:

C++ Code:

#include <cstdio>
const int mod = 9999991;
int n, sum;
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
int main() {
scanf("%d", &n);
sum = pw(n, n - 2);
for (int i = 2; i < n; ++i) sum = static_cast<long long> (sum) * i % mod;
printf("%d\n", sum);
return 0;
}

[洛谷P4430]小猴打架的更多相关文章

  1. 洛谷 P4430 小猴打架

    洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...

  2. P4430 小猴打架、P4981 父子

    prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n ...

  3. P4430 小猴打架

    P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...

  4. 洛谷-笨小猴-NOIP2008提高组复赛

    题目描述 Description 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设m ...

  5. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  6. 洛谷P1120 小木棍

    洛谷1120 小木棍 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50.     现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长 ...

  7. 洛谷1373 小a和uim之大逃离

    洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北 ...

  8. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  9. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

随机推荐

  1. Centos7 下安装以及使用mssql

    Centos7下安装以及使用Mssql,在这下面玩,主要是发现linux环境下的mysql非常的小,小到只有169M,这在windows上面,动撤几个G的安装文件,会让你直接打消使用MSSQL的勇气, ...

  2. spring源码-Aware-3.4

    一.Aware接口,这个也是spring的拓展之一,为啥要单独拿出来讲呢,因为他相比于BeanFactoryPostProcessor,BeanPostProcessor的实用性更加高,并且在具体的业 ...

  3. vim 安装

    Ubuntu 16.04 下 Vim安装及配置 默认已经安装了VIM-tiny linuxidc@linuxidc:~$ locate vi | grep 'vi$' |xargs ls -al lr ...

  4. 【完美解决】Spark-SQL、Hive多 Metastore、多后端、多库

    [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 SparkSQL 支持同时连接多种 Meta ...

  5. linux部署MantisBT(三)部署MantisBT

    三.部署MantisBT 1.下载MantisBT https://www.mantisbt.org/download.php 2.将MantisBT安装包放在/apache/htdocs下并重命名为 ...

  6. Java学习 · 初识 异常机制

    异常机制 1.   程序中的异常 a)     b)    面对异常如何解决 i.           由开发者通过if-else来解决 代码臃肿 程序员需要花费很大精力 ii.           ...

  7. gdb超级基础教程

    GDB超级基础教程 为什么叫超级基础呢,因为我被坑了一把.... 编译选项带 -g 就可以在可执行程序中加入调试信息,然后就可以使用gdb去查看了. 使用help命令就可以看到: (gdb) help ...

  8. 硬件PCB Layout布局布线Checklist检查表(通用版)

    按部位分类 技术规范内容 1 PCB布线与布局 PCB布线与布局隔离准则:强弱电流隔离.大小电压隔离,高低频率隔离.输入输出隔离.数字模拟隔离.输入输出隔离,分界标准为相差一个数量级.隔离方法包括:空 ...

  9. 自测之Lesson11:消息和消息队列

    题目:key及ftok函数的作用. 解答: key是用来创建消息队列的一个参数,当两个key相同时,创建消息队列会引起“误会”(除非有意为之).所以我们可以通过ftok函数来获得一个“不易重复”的ke ...

  10. Mininet实验 多个数据中心的拓扑网络实现

    实验目的 掌握多数据中心网络拓扑的构建 掌握多数据中心数据交换过程 实验原理 主机间发送消息上报给交换机,交换机对收到的报文信息进行分析判断,如果交换机中存在此消息相对应的流表,则交换机直接下发流表, ...