BZOJ5334:[TJOI2018]数学计算——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5334
小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:1 m: x = x * m ,输出 x%mod;2 pos: x = x / 第pos次操作所乘的数(保证第pos次操作一定为类型1,对于每一个类型1 的操作至多会被除一次),输出x%mod
都懒得写题解了……就对着时间建一个线段树,区间维护乘积即可。
真·大水题。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int Q=1e5+;
inline ll read(){
ll X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int q;
ll p,tr[Q*];
inline void upt(int a){tr[a]=tr[a<<]*tr[a<<|]%p;}
void build(int a,int l,int r){
if(l==r){
tr[a]=;return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
upt(a);
}
void mdy(int a,int l,int r,int x,ll y){
if(l==r){
tr[a]=y;
return;
}
int mid=(l+r)>>;
if(x<=mid)mdy(a<<,l,mid,x,y);
else mdy(a<<|,mid+,r,x,y);
upt(a);
}
int main(){
int T=read();
while(T--){
q=read(),p=read();
build(,,q);
for(int i=;i<=q;i++){
int op=read();
if(op==){
ll m=read();
mdy(,,q,i,m);
}else{
int pos=read();
mdy(,,q,pos,);
}
printf("%lld\n",tr[]);
}
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++
BZOJ5334:[TJOI2018]数学计算——题解的更多相关文章
- BZOJ5334: [Tjoi2018]数学计算
BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...
- [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)
模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...
- TJOI2018 数学计算 题解
题目 小豆现在有一个数 \(x\) ,初始值为 \(1\) . 小豆有 \(Q\) 次操作,操作有两种类型: \(m\): \(x=x×m\),输出 \(x\mod M\) : \(pos\): \( ...
- BZOJ5334 [TJOI2018] 数学计算 【线段树分治】
题目分析: 大概是考场上的签到题.首先mod不是质数,所以不能求逆元.注意到有加入操作和删除操作.一个很典型的想法就是线段树分治.建立时间线段树然后只更改有影响的节点,最后把所有标记下传.时间复杂度是 ...
- BZOJ5334:[TJOI2018]数学计算(线段树)
Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 1 m: x = x * m ,输出 x%mod; 2 pos: x = x / 第pos次操作所乘 ...
- 【BZOJ5334】数学计算(线段树)
[BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...
- [Tjoi2018]数学计算
[Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...
- 题解【洛谷P4588】[TJOI2018]数学计算
题目描述 小豆现在有一个数\(x\),初始值为\(1\).小豆有\(Q\)次操作,操作有两种类型: \(1\;m\):\(x=x\times m\)输出\(x\%mod\); \(2\;pos\):\ ...
- 【题解】Luogu P4588 [TJOI2018]数学计算
原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m ...
随机推荐
- 两分钟了解Docker的优势
本文来自网易云社区 我们主要从Docker对业务架构和生产实践的角度来分析. 随着业务规模的逐渐扩大,产品复杂度也随着增加,企业需要解决快速迭代.高可靠和高可用等问题,一个自然的选择是服务化的拆分,把 ...
- libevent学习一
常见的异步IO存在的问题: 1.使用 fcntl(fd, F_SETFL, O_NONBLOCK);,为什么在处理上效率不好. a.在没有数据可读写的时候,循环会不停执行,浪费掉大部分 ...
- hdu1052Tian Ji -- The Horse Racing(贪心,细节多)
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- 通过 zxing 生成二维码
二维码现在随处可见,在日常的开发中,也会经常涉及到二维码的生成,特别是开发一些活动或者推广方面的功能时,二维码甚至成为必备功能点.本文介绍通过 google 的 zxing 包生成带 logo 的二维 ...
- Selenium 入门到精通系列:六
Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...
- Linux命令应用大词典-第33章 X Window
33.1 xhost:X服务器的访问控制程序 33.2 xinit:X Window系统初始化 33.3 Xlsclients:在显示器中列出正在运行的客户端应用程序 33.4 xlsfonts:显示 ...
- java实现网页截图
使用工具 java+selenium+phantomjs /chromedriver /firefox 1.分别是 phantomjs插件 google截图插件 和 firefox火狐浏览器截图插件2 ...
- 操作系统及Python解释器工作原理讲解
操作系统介绍 操作系统位于计算机硬件与应用软件之间 是一个协调.管理.控制计算机硬件资源与软件资源的控制程序 操作系统功能: 控制硬件 把对硬件复杂的操作封装成优美简单的接口(文件),给用户或者应用程 ...
- jquery中的$(document).ready()、JavaScript中的window.onload()以及body中的onload()、DomContentLoaded()区别
$().ready().$(handler).$(document).ready(handler)均不是原生JS中的,都是jQuery中封装的方法.这些事件在当页面的dom节点加载完毕后就执行,无需等 ...
- 2018-9-25kanboard安装及使用
2018-9-25kanboard安装及使用 教程 小书匠 欢迎走进zozo的学习之旅. 简介 运行官方docker容器 使用kanboard 简介 Kanboard的安装提供了两种方式一种是直接安 ...