BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】
题目链接
题解
一眼看过去是二维结构,实则未然需要树套树之类的数据结构
区域异或和,就一定是可持久化\(trie\)树
观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚至可以每次询问都枚举\(x_i\)
所以我们可以考虑对\(y_i\)建\(trie\),每次询问取出对应区间的\(x_i\)在对应区间的\(trie\)树中跑
多点询问和单点询问时类似的,只不过它们会分开走
我们只需每次记录每个\(x_i\)所在的节点
对于每一层,统计一下能异或出多少\(1\),如果\(\le k\),每个\(x_i\)往能异或出\(1\)的方向走,否则走另一边,并令\(k\)减去这些数
复杂度\(O(31m + 31qn)\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 300005,B = 30,maxm = 10000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int bin[50],n,m;
int a[1005],b[maxn],rt[maxn],cnt;
int ch[maxm][2],sum[maxm];
int ins(int x,int v){
int u,tmp;
u = tmp = ++cnt;
for (int i = B; ~i; i--){
ch[u][0] = ch[v][0];
ch[u][1] = ch[v][1];
sum[u] = sum[v] + 1;
int t = bin[i] & x; t >>= i;
v = ch[v][t];
u = ch[u][t] = ++cnt;
}
sum[u] = sum[v] + 1;
return tmp;
}
int atu[1005],atv[1005];
int query(int u,int v,int l,int r,int k){
int ans = 0;
for (int i = l; i <= r; i++) atu[i] = u,atv[i] = v;
for (int i = B; ~i; i--){
int cnt = 0;
for (int j = l; j <= r; j++){
int x = atu[j],y = atv[j],t = bin[i] & a[j]; t >>= i;
cnt += sum[ch[x][t ^ 1]] - sum[ch[y][t ^ 1]];
}
if (cnt >= k){
ans += bin[i];
for (int j = l; j <= r; j++){
int x = atu[j],y = atv[j],t = bin[i] & a[j]; t >>= i;
atu[j] = ch[x][t ^ 1];
atv[j] = ch[y][t ^ 1];
}
}
else {
k -= cnt;
for (int j = l; j <= r; j++){
int x = atu[j],y = atv[j],t = bin[i] & a[j]; t >>= i;
atu[j] = ch[x][t];
atv[j] = ch[y][t];
}
}
}
return ans;
}
int main(){
bin[0] = 1; for (int i = 1; i <= 30; i++) bin[i] = bin[i - 1] << 1;
n = read(); m = read();
for (int i = 1; i <= n; i++) a[i] = read();
for (int i = 1; i <= m; i++){
b[i] = read();
rt[i] = ins(b[i],rt[i - 1]);
}
int p = read(),u,d,l,r,k;
while (p--){
u = read(); d = read(); l = read(); r = read(); k = read();
printf("%d\n",query(rt[r],rt[l - 1],u,d,k));
}
return 0;
}
BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】的更多相关文章
- [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树
4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...
- 【bzoj4103】[Thu Summer Camp 2015]异或运算 可持久化trie树
Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i ...
- BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie
开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++ ...
- bzoj4103 [Thu Summer Camp 2015]异或运算(可持久化trie)
内存限制:512 MiB 时间限制:1000 ms 题目描述 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi ...
- bzoj4103: [Thu Summer Camp 2015]异或运算
对于每个询问暴力枚举x~y,然后在Trie去找第k大,开始我写了个二分答案然后算比当前答案大的个数,打了个第10个点的表就跑出19s+比bzoj垫底还慢4s+ 然而不用二分,直接1000个点一起在树上 ...
- 【BZOJ 4103】 [Thu Summer Camp 2015]异或运算 可持久化01Trie
我们观察数据:树套树 PASS 主席树 PASS 一层一个Trie PASS 再看,异或!我们就把目光暂时定在01Tire然后我们发现,我们可以带着一堆点在01Trie上行走,因为O(n*q* ...
- 【BZOJ 4103】 4103: [Thu Summer Camp 2015]异或运算 (可持久化Trie)
4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 474 Solved: 258 De ...
- [BZOJ 4103] [Thu Summer Camp 2015] 异或运算 【可持久化Trie】
题目链接:BZOJ - 4103 题目分析 THUSC滚粗之后一直没有写这道题,从来没写过可持久化Trie,发现其实和可持久化线段树都是一样的.嗯,有些东西就是明白得太晚. 首先Orz ZYF-ZYF ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
随机推荐
- django1.11+xadmin的搭建
1.git clone https://github.com/sshwsfc/xadmin.git或者直接下载zip包 2..在项目根目录下建一个extra_apps的包,将xadmin源码包存放在里 ...
- uvaoj 489 - Hangman Judge(逻辑+写代码能力)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 前端开发工程师 - 05.产品前端架构 - 协作流程 & 接口设计 & 版本管理 & 技术选型 &开发实践
05.产品前端架构 第1章--协作流程 WEB系统 角色定义 协作流程 职责说明 第2章--接口设计 概述 接口规范 规范应用 本地开发 第3章--版本管理 见 Java开发工程师(Web方向) - ...
- Java应用基础微专业-设计篇
第1章--抽象与接口 1.1 抽象 An abstract class can be created without abstract methods, the purpose of doing th ...
- CSP201709-1:打酱油
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- Docker 镜像构建的时候,应该小心的坑
不要改文件 如果run了以后,你还需要进入到容器中,修改容器的配置,那么,这个容器是危险的.一旦容器无法启动,就再也改不了配置.那么你就需要删除和重新run这个容器,而配置要再改一遍.一个可用的镜像在 ...
- Python3 数据类型-集合
在Python中集合set是基本数据类型的一种,它有可变集合(set)和不可变集合(frozenset)两种.创建集合set.集合set添加.集合删除.交集.并集.差集的操作都是非常实用的方法. 集合 ...
- 《Linux编程大作业》
一.要求 作业题目 Linux下的多进程/线程网络通信 作业目标 要求学生熟练掌握<Linux编程>课程中的知识点,包括Linux常用命令.bash脚本.编译和调试环境.读写文件.进程间通 ...
- “Hello world!”团队第三周贡献分规则
一.贡献规则制定: (1)基础分:9 , 9 , 8 , 7 , 7 , 7 , 6(按在本次编程中承担模块的重要度制定,某一模块重要度的认定通过组内开会讨论决定) (2)会议分:每人没出勤一次会议记 ...
- eg_1
1. 编写一个程序,输出一个字符串中的大写英文字母个数,小写英文字母个数以及非英文字母个数. 第一种方法: public class Test { public static void main(St ...