bzoj3157: 国王奇遇记
emmm。。。。。。
直接看题解好了:
BZOJ-3157. 国王奇遇记 – Miskcoo's Space
O(m)不懂扔掉
总之,给我们另一个处理复杂求和的方法:
找到函数之间的递推公式!
这里用错位相减,然后想办法转化
由于根据二项式定理,展开之后会出现k^i的乘方,所以展开,有助于变成f(j)递推下去
O(m^2)
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
const int mod=1e9+;
ll C[N][N];
int n,m;
ll f[N];
ll qm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=ret*x%mod;
x=x*x%mod;
y>>=;
}
return ret;
}
int main(){
rd(n);rd(m); if(m==){
ll ans=((ll)n*(n+))%mod*qm(,mod-)%mod;
printf("%lld",ans);
return ;
}
C[][]=;
for(reg i=;i<=m;++i){
C[i][]=;
for(reg j=;j<=m;++j){
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
}
f[]=m*(qm(m,n)-+mod)%mod*qm(m-,mod-)%mod;
for(reg i=;i<=m;++i){
for(reg j=;j<=i-;++j){
if((i-j)&){
f[i]=(f[i]-C[i][j]*f[j]%mod+mod)%mod;
}else{
f[i]=(f[i]+C[i][j]*f[j]%mod)%mod;
}
}
f[i]=(f[i]+qm(n,i)*qm(m,n+)%mod)%mod;
f[i]=(f[i]*qm(m-,mod-))%mod;
}
printf("%lld",f[m]);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/12/29 16:48:22
*/
bzoj3157: 国王奇遇记的更多相关文章
- bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成
bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...
- BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版
令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...
- 扰动法--*BZOJ3157: 国王奇遇记
求$\sum_{i=1}^ni^mm^i$.$n \leq 1e9,m \leq 200$. 其实我也不知道这东西为啥叫“扰动法”,大概是在黑暗的边缘试探?就是那种,人家再多一点就被您看破了,然后您就 ...
- BZOJ3157 国王奇遇记——神奇的推式子
先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{ ...
- 【BZOJ3157/3516】国王奇遇记(数论)
[BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...
- 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记
数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...
- BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)
由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include< ...
- 【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值
题目描述 三倍经验题. 给你\(n,m\),求 \[ \sum_{i=1}^ni^mm^i \] \(n\leq {10}^9,1\leq m\leq 500000\) 题解 当\(m=1\)时\(a ...
- bzoj3157 3516 国王奇遇记
Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...
随机推荐
- Qt-网络与通信-UDP网络通讯
用户数据报协议是一种简单的轻量级.不可靠.面向数据.无连接的传出层协议,可以应用于在可靠性不是十分重要的场合,如短消息,广播信息等. 例如一下场合 网络数据大多为短消息 拥有大量客户端 对数据安全性无 ...
- linux基础——文件挂载,lamp安装
一. 文件挂载 lsblk -f 显示文件系统信息 mount -t vfat UUID="ffffffffff" /mnt 挂载到/mnt目录 Linux针对于各式U盘挂载方 ...
- GIt学习第一天之安装和版本库创建
搬运自 ‘廖雪峰的官方网站’ 1.git安装 官网下载地址:https://git-scm.com/download/win 百度网盘下载地址:https://pan.baidu.com/s/1k ...
- Java应用基础微专业-进阶篇
第1章--使用对象 1.1 字符类型 char c = 65; // char --> int char c = '\u0041'; // \u: unicode + (Hex 41--> ...
- JAVA基础学习之路(七)对象数组的定义及使用
两种定义方式: 1.动态初始化: 定义并开辟数组:类名称 对象数组名[] = new 类名称[长度] 分布按成:类名称 对象数组名[] = null: 对象数组名 = new 类名称[长度]: 2 ...
- 大理石在哪儿 (Where is the Marble?,UVa 10474)
题目描述:算法竞赛入门经典例题5-1 #include <iostream> #include <algorithm> using namespace std; ; int m ...
- ArrayList与LinkedList的普通for循环遍历
对于大部分Java程序员朋友们来说,可能平时使用得最多的List就是ArrayList,对于ArrayList的遍历,一般用如下写法: public static void main(String[] ...
- Docker容器的搭建
Docker容器的搭建 一.先从Docker Hub上面拉取一个基础镜像 命令:docker pull ubuntu 命令说明:pull:拉取镜像的命令,ubuntu:拉取镜像的名称 扩展命令: 命令 ...
- 【转】Backbone.js学习笔记(一)
文章转自: http://segmentfault.com/a/1190000002386651 基本概念 前言 昨天开始学Backbone.js,写篇笔记记录一下吧,一直对MVC模式挺好奇的,也对j ...
- ACM 第九天
动态规划1 动态规划问题是面试题中的热门话题,如果要求一个问题的最优解(通常是最大值或者最小值),而且该问题能够分解成若干个子问题,并且小问题之间也存在重叠的子问题,则考虑采用动态规划. 1.LLS ...