POJ-1830
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 6294 | Accepted: 2393 |
Description
Input
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output
Sample Input
2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0
Sample Output
4
Oh,it's impossible~!!
Hint
第一组数据的说明:
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
/**
题意:给一些开关,开某一个开关之后有的开关也会变化
做法:高斯消元 线性代数
**/
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#define maxn 50
using namespace std;
int mmap[maxn][maxn];
int start[maxn];
int eed[maxn];
int guess(int equ,int val)
{
int k=,col = ;
int max_r = ;
for(k=; k<equ&&col<val; k++,col++)
{
max_r = k;
for(int i=k+; i<equ; i++)
{
if(abs(mmap[i][col]) > abs(mmap[max_r][col]))
{
max_r = i;
}
}
if(max_r != k)
{
for(int i=k; i<val+; i++)
{
swap(mmap[k][i],mmap[max_r][i]);
}
}
if(mmap[k][col] == )
{
k--;
continue;
}
for(int i=k+; i<equ; i++)
{
if(mmap[i][col] != )
{
for(int j=col; j<val+; j++)
{
mmap[i][j] ^= mmap[k][j];
}
}
}
}
///上三角
for(int i=k; i<equ; i++)
{
if(mmap[i][col]!=) return -;
}
return val-k;
}
int main()
{
//#ifndef ONLINE_JUDGE
// freopen("in.txt","r",stdin);
//#endif // ONLINE_JUDGE
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
memset(start,,sizeof(start));
memset(eed,,sizeof(eed));
for(int i=; i<n; i++)
{
scanf("%d",&start[i]);
}
for(int i=; i<n; i++)
{
scanf("%d",&eed[i]);
}
int u,v;
memset(mmap,,sizeof(mmap));
while(scanf("%d %d",&u,&v))
{
if(u == && v == ) break;
u--;
v--;
mmap[v][u] = ;
}
for(int i=; i<n; i++)
{
mmap[i][i] = ;
}
for(int i=; i<n; i++)
{
mmap[i][n] = start[i]^eed[i];
}
int res = guess(n,n);
if(res == -) printf("Oh,it's impossible~!!\n");
else printf("%d\n",<<res);
}
return ;
}
POJ-1830的更多相关文章
- 【POJ 1830】 开关问题 (高斯消元)
开关问题 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...
- POJ 1830 开关问题(高斯消元)题解
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...
- POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...
- POJ 1830 开关问题(高斯消元求解的情况)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8714 Accepted: 3424 Description ...
- 数学 --- 高斯消元 POJ 1830
开关问题 Problem's Link: http://poj.org/problem?id=1830 Mean: 略 analyse: 增广矩阵:con[i][j]:若操作j,i的状态改变则con[ ...
- POJ 1830 开关问题 【01矩阵 高斯消元】
任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- 【POJ 1830】 开关问题
[题目链接] http://poj.org/problem?id=1830 [算法] 列出异或方程组,用高斯消元求解 [代码] #include <algorithm> #include ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- poj 1830 开关问题
开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...
随机推荐
- HDU5115:Dire Wolf——题解+翻译
http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:给n匹狼,每一次攻击可以秒杀一匹狼,但同时会受到这匹狼的a攻击和它相邻两只狼的b攻击. 给定a, ...
- Spring.NET中事务管理【转】
http://www.cnblogs.com/GoodHelper/archive/2009/11/16/springnet_transaction.html 浏览了下写的比较清楚. 在.NET FC ...
- Ubuntu 14.04 64bit下Caffe + Cuda6.5/Cuda7.0 安装配置教程
http://www.embeddedlinux.org.cn/emb-linux/entry-level/201612/21-6005.html 随着深度学习快速发展的浪潮,许多有兴趣的工作者都转入 ...
- ioctrl 获取本机IP及MAC地址
通过使用ioctl可以获得本机的一些信息,这里记录获得interface IP及MAC的过程. 1:ioctl 函数的作用是什么 man ioctl: DESCRIPTION The ioctl() ...
- Axis2 WebService(配置、发布、调用)
准备工作 1.下载:axis2-1.5.4-bin.zip,axis2-1.5.4-war.zip 下载地址:http://axis.apache.org/axis2/java/core/ 2.环境变 ...
- 2015/8/31 Python基础(5):字符串
字符串是Python最常见的一种类型.通过在引号间包含字符的方式创建它.Python里单双引号的作用是一致的.Python的对象类型里不存在字符型,一般用单个字符的字符串来使用.Python的字符串是 ...
- Linux修改用户密码
1. root修改自己 # passwd 2. root修改别人 # passwd oracle //修改oracle的密码
- Java——Iterate through a HashMap
遍历Map import java.util.*; public class IterateHashMap { public static void main(String[] args) { Map ...
- 【CodeForces】601 D. Acyclic Organic Compounds
[题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...
- 五分钟学习Java8的流编程
1.概述 Java8中在Collection中增加了一个stream()方法,该方法返回一个Stream类型.我们就是用该Stream来进行流编程的: 流与集合不同,流是只有在按需计算的,而集合是已经 ...