题意

定义一个\(n*n\)的矩阵是\(beautiful\)的,需要满足以下三个条件:

1.每一行是一个排列。

2.上下相邻的两个元素的值不同。

再定义两个矩阵的字典序大的矩阵大(从左往右从上到下一个一个比较)。

给出一个\(beautiful\)的\(n*n\)的矩阵,求有多少个矩阵小于这个矩阵。

Solution

逐行计算。

\(ans=\)每行字典序比这行小的排列且与上一行相邻的两个元素值不同的排列个数*\(n\)个元素错排的方案数\(^{n-i}\)

第一行的方案数随便算,我就不说了。

另外的行大概就是逐位算。

从后往前枚举前\(i\)个数相同,树状数组维护当前位置可以填的数有几个有限制(即上一行后\(n-i+1\)中有这个数)和当前能填哪些数(即比\(a_{i,j}\)小且在当前行后\(n-i+1\)个数中出现了),不难发现有限制的数或者没限制的数都是同质的,那么就答案就是方案数乘上数的个数,问题就是有几个数有限制的错排怎么算方案数?\(dp\)一下就好了。

设\(dp_{i,j}\)表示\(i\)个数中有\(j\)个数有限制的排列的方案数。

考虑从\(dp_{i,j-1}\)转移,减去多了一个限制的数会少的方案数。

多了一个限制的数不合法的方案数?那我们就强制多的那个数不符合限制,另外数符合限制,也就是\(dp_{i-1,j-1}\)。

\(dp_{i,j}=dp_{i,j-1}-dp_{i-1,j-1}\)

如果不会推,也可以打表

\(dp_{n,n}\)的值就是\(n\)个数错排的方案数。

#include<bits/stdc++.h>
#define For(i,x,y) for (register int i=(x);i<=(y);i++)
#define Dow(i,x,y) for (register int i=(x);i>=(y);i--)
#define cross(i,k) for (register int i=first[k];i;i=last[i])
#define Debug(x) cerr<<#x<<"="<<(x)<<endl
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
inline ll read(){
ll x=0;int ch=getchar(),f=1;
while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar();
if (ch=='-'){f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int N = 2010;
int n,a[N][N];
const int mod = 998244353;
int fac[N],dp[N][N],p[N];
inline void init(){
fac[0]=1;For(i,1,n) fac[i]=1ll*fac[i-1]*i%mod;
dp[1][0]=1;
For(i,2,n){
dp[i][0]=fac[i];
For(j,1,i) dp[i][j]=(dp[i][j-1]-dp[i-1][j-1]+mod)%mod;
}
p[0]=1;For(i,1,n) p[i]=1ll*p[i-1]*dp[n][n]%mod;
}
struct BIT{
int c[N],sum;
inline void clear(){sum=0,memset(c,0,sizeof c);}
inline void Add(int x){sum++;for (;x<=n;x+=x&-x) c[x]++;}
inline int Query(int x){int ans=0;for (;x;x-=x&-x) ans+=c[x];return ans;}
}t,T;
int b[N],ans;
inline void Add(int x){if (++b[x]==2) T.Add(x);}
inline void upd(int &x,int y){x+=y,(x>=mod)?x-=mod:0;}
int main(){
n=read();
For(i,1,n) For(j,1,n) a[i][j]=read();
init();int sum=0;
For(i,1,n) upd(sum,1ll*fac[n-i]*(a[1][i]-1-t.Query(a[1][i]-1))%mod),t.Add(a[1][i]);
ans=1ll*sum*p[n-1]%mod;//printf("%d\n",ans);
For(i,2,n){
t.clear(),T.clear(),sum=0,memset(b,0,sizeof b);
Dow(j,n,1){
Add(a[i][j]),Add(a[i-1][j]),t.Add(a[i][j]);
int x=T.Query(a[i][j]-1),y=t.Query(a[i][j]-1)-x,z=T.sum;
if (b[a[i-1][j]]==2&&a[i-1][j]<a[i][j]) x--;
if (b[a[i-1][j]]==2) z--;
upd(sum,1ll*x*dp[n-j][z-1]%mod),upd(sum,1ll*y*dp[n-j][z]%mod);
//printf("%d %d ",z,x*dp[n-j][z-1]);
}//puts("");
upd(ans,1ll*sum*p[n-i]%mod);
}
printf("%d\n",ans);
}

Codeforces 1085G(1086E) Beautiful Matrix $dp$+树状数组的更多相关文章

  1. Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp

    Flight Boarding Optimization 题目连接: http://codeforces.com/gym/100269/attachments Description Peter is ...

  2. Educational Codeforces Round 10 D. Nested Segments (树状数组)

    题目链接:http://codeforces.com/problemset/problem/652/D 给你n个不同的区间,L或者R不会出现相同的数字,问你每一个区间包含多少个区间. 我是先把每个区间 ...

  3. Codeforces Gym 100114 H. Milestones 离线树状数组

    H. Milestones Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descripti ...

  4. Codeforces - 828E DNA Evolution —— 很多棵树状数组

    题目链接:http://codeforces.com/contest/828/problem/E E. DNA Evolution time limit per test 2 seconds memo ...

  5. Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

    http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...

  6. Codeforces 786C Till I Collapse(树状数组+扫描线+倍增)

    [题目链接] http://codeforces.com/contest/786/problem/C [题目大意] 给出一个数列,问对于不同的k,将区间划分为几个, 每个区间出现不同元素个数不超过k时 ...

  7. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  8. Codeforces 216D Spider&#39;s Web 树状数组+模拟

    题目链接:http://codeforces.com/problemset/problem/216/D 题意: 对于一个梯形区域,假设梯形左边的点数!=梯形右边的点数,那么这个梯形为红色.否则为绿色, ...

  9. CodeForces - 369E Valera and Queries(树状数组)

    CodeForces - 369E Valera and Queries 题目大意:给出n个线段(线段的左端点和右端点坐标)和m个查询,每个查询有cnt个点,要求给出有多少条线段包含至少其中一个点. ...

随机推荐

  1. [转]softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  2. 子查询优化--explain与profiling分析语句

    今天想的利用explain与progiling分析下语句然后进行优化.本文重点是如何通过explain与profiling分析SQL执行过程与性能.进而明白索引的重要性. 表的关系如下所示: 原始的查 ...

  3. Linux内存初始化【转】

    转自:http://www.cnblogs.com/super-king/p/3291120.html start_kernel -> setup_arch 在这个函数中我们主要看这几个函数. ...

  4. MySQL主从复制-指定数据库复制

    在/etc/my.cnf添加需要进行同步的数据库信息 #需要进行同步的数据库 #replicate-do-db=custmgr #replicate-do-db=sdata #replicate-ig ...

  5. FastDFS集群部署

    之前介绍过关于FastDFS单机部署,详见博文:FastDFS+Nginx(单点部署)事例 下面来玩下FastDFS集群部署,实现高可用(HA) 服务器规划: 跟踪服务器1[主机](Tracker S ...

  6. error while loading shared libraries: libtest.so: cannot open shared object file: No such file or directory

    一般我们在Linux下执行某些外部程序的时候可能会提示找不到共享库的错误, 比如: tmux: error while loading shared libraries: libevent-1.4.s ...

  7. MongoDB安全:内置角色概览

    官文列举如下(文档不长,过英语四级者可以轻松阅读,就不需要看本文额)(基于MongoDB 3.6的文档,4.0也没有变化): Role-Based Access Control Built-In Ro ...

  8. No.5 selenium学习之路之多窗口句柄

    多窗口相关操作 获取当前句柄 c_handle = driver.current_window_handle 获取所有句柄 all_handle = driver.window_handles 切换到 ...

  9. Service(一):认识service、绑定Service

    Activity是与用户打交道的,而Service是在后台运行的. 这个程序介绍了下如何启动和停止一个Service,以及在后台打印消息,我添加了一些注释. 在activity_main中将布局改为线 ...

  10. 洛谷P1782 旅行商的背包

    传送门啦 这个题不用二进制优化的话根本不行,现学的二进制优化,调了一段时间终于A了,不容易.. 如果不懂二进制优化的话可以去看我那个博客 二进制优化多重背包入口 不想TLE,不要打memset,一定要 ...