https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian
 

代码:

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int N, M;
vector<int> v[maxn];
int vis[maxn];
int step = 0; void dfs(int st) {
vis[st] = 1;
step ++;
for(int i = 0; i < v[st].size(); i ++) {
if(vis[v[st][i]] == 0)
dfs(v[st][i]);
}
} int main() {
scanf("%d%d", &N, &M);
memset(vis, 0, sizeof(vis));
while(M --) {
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(b);
v[b].push_back(a);
} int cnt = 0;
for(int i = 1; i <= N; i ++) {
printf("%d", v[i].size());
printf("%s", i != N ? " " : "\n");
if(v[i].size() % 2 == 0) cnt ++;
} dfs(1);
if(step != N) printf("Non-Eulerian\n");
else {
if(cnt == N) printf("Eulerian\n");
else if(cnt == N - 2) printf("Semi-Eulerian\n");
else printf("Non-Eulerian\n");
}
return 0;
}  

题目意思是判断每个点的度 都是偶数的话输出 Eulerian 只有两个点的度是奇数其余都是偶数的话输出 Semi-Eulerian 否则输出 Non-Eulerian 要注意 dfs 判断是不是一个连通图

新年快乐 不好的事情就留在上一年吧 今年一定要有不一样 

PAT 甲级 1126 Eulerian Path的更多相关文章

  1. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  2. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  3. PAT甲级——A1126 Eulerian Path【30】

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  4. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  6. 【刷题-PAT】A1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  7. PAT 1126 Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  9. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

随机推荐

  1. 课下测试ch01修改补交

    由于当时学习态度有问题,没有注意到第一次的课下测试,虽然在当周的总结中就进行补交,但是当时态度并没有很认真,可能没有引起老师的注意,现在重新修改,望老师谅解. (单选题 | 1 分) Amdahl定律 ...

  2. WPF模拟雷达界面效果图

    原文:WPF模拟雷达界面效果图 iPad塔防的防守兵的效果很炫,2个小时用WPF模拟了一个. 效果图: 关键代码: <Grid> <Grid.Background> <I ...

  3. PageIOLatch和PageLatch

    Latch是轻量级的锁,它是SQL Server内部用来同步资源访问的一个数据结构,使数据的访问同步有序,这意味着,当一个线程获得资源R的Latch的独占使用权时,如果其他的线程也想访问这个Latch ...

  4. [坑况]——webpack搭建前端环境踩过的坑啊

    前言 嘿哈,webpack搭建前端环境踩过的坑啊! 第一个:完全不知所措 webpack4 下面用不了HtmlWebpackPlugin 和 ExtractTextPlugin 解决方案: html- ...

  5. sqlmap注入分类

    注入分法不同,种类不同,来个简单的分类: 1.get型:sqlmap -u “http://xxx.xx.xxx/xx.xxx?xx=xxx”  2.post型: sqlmap -u “http:// ...

  6. Python接口测试实战1(上)- 接口测试理论

    如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...

  7. Jenkins持续部署

    Jenkins持续部署 Jenkins提供很好的连续部署和交付的支持.看一下部署任何软件开发的流程,将如下图所示. 连续部署的主要部分,是确保其上面所示的整个过程是自动化的.Jenkins实现所有这些 ...

  8. Activity启动过程中获取组件宽高的五种方式

    第一种:(重写Activity的onWindowFocusChanged方法) /** * 重写Acitivty的onWindowFocusChanged方法 */ @Override public ...

  9. [Processing] 弹球

    PVector localPos = new PVector(0,0);//起始位置 PVector velocity;//速度方向 float speed = 20;//速度大小 void setu ...

  10. 如何在多机架(rack)配置环境中部署cassandra节点

    cassandra节点上数据的分布和存储是由系统自动完成的.除了我们要设计好partition key之外,在多机架(rack)配置环境中部署cassandra节点,也需要考虑cassandra分布数 ...