「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)
学习了新姿势。。(一直看不懂大爷的代码卡了好久T T
首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2*s_l-l$的区间$[l+1,r]$其众数为$x$,这个显然可以用一个数据结构来维护。
直接扫一遍效率是$O($数字种类数$*nlogn)$的,无法承受,但是我们发现,对于每一段非$x$的数,$2*s_i-i$是公差为$-1$的等差数列,所以它们对答案的贡献实际上可以一次性计算。设$L$为一段非$x$数的开头,$R$为结尾,则$\leq 2*s_R-R$的数贡献会被计算$len$次,$2*s_{R-1}-(R-1)$的数的贡献会被计算$len-1$次,...,$s_l-l$的数的贡献会被计算$1$次,这个贡献的计算次数也是个等差数列。
那实际上我们有三种维护这个的方法。
①维护$a_i$表示$2*s_i-i$的出现次数,支持区间加和区间查询$\sum_{i=l}^r a_i*(i-l+1)$,较为麻烦,权值线段树。
②维护$s_i$表示$a_i$的前缀和,支持区间加一段等差数列和区间查询,挺可写,权值线段树。
③维护$s_i$的前缀和,支持区间加二次函数和单点查询,代码短但因为较抽象所以有些难调,树状数组,非常快。
这里只说第三种写法,第一次见到这种操作...
树状数组里实际上维护的是$s_1,s_1+s_2,s_1+s_2+s_3,...$,所以修改一段区间的时候,相当于给一段区间加上等差数列的求和,即$((1+i-l+1)*(i-l+1))/2=(i^2+(3-2l)i+l^2+3l+2)/2$,所以我们只要在树状数组上维护二次项,一次项和常数项,区间修改用差分,最后查询一段区间只要头尾相减就好了...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=;
int n, x, N, t;
int a[maxn], treety[maxn], pos[maxn], pre[maxn];
ll tree1[maxn], tree2[maxn], tree3[maxn], ans;
char buf[],*ptr=buf-;
inline int read()
{
char c=*++ptr;int s=,t=;
while(c<||c>)c=*++ptr;
while(c>=&&c<=){s=s*+c-'';c=*++ptr;}
return s*t;
}
inline void add(int x, int p)
{
x+=n+;
ll delta1=, delta2=-*x, delta3=1ll*x*x-*x+;
for(;x<=N;x+=x&-x)
{
if(treety[x]!=t) treety[x]=t, tree1[x]=tree2[x]=tree3[x]=;
tree1[x]+=delta1*p, tree2[x]+=delta2*p, tree3[x]+=delta3*p;
}
}
inline void query(int x, int ty)
{
x+=n+; int pos=x;
for(;x;x-=x&-x) if(treety[x]==t)
ans+=(tree1[x]*pos*pos+tree2[x]*pos+tree3[x])*ty;
}
inline void update(int l, int r, int s){add(*s-r, ); add(*s-l+, -);}
int main()
{
fread(buf,,sizeof(buf),stdin); n=read(); x=read(); N=n+n+;
for(int i=;i<=n;i++) x=read(), pre[i]=pos[x], pos[x]=i;
for(int i=;i<n;i++)
if(pos[i])
{
int cnt=; ++t;
for(int j=pos[i];j;j=pre[j]) a[++cnt]=j;
update(, a[cnt]-, );
for(int j=cnt;j;j--)
{
query(*(cnt-j+)-a[j]-, );
query(*(cnt-j+)-((j-)?a[j-]+:n+), -);
update(a[j], (j-)?a[j-]-:n, cnt-j+);
}
}
printf("%lld\n", ans>>);
}
「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)的更多相关文章
- 「CodePlus 2017 11 月赛」Yazid 的新生舞会
n<=500000的数字,问有多少个区间的众数出现次数严格大于区间长度的一半. 这么说来一个区间就一个众数了,所以第一反应是枚举数字,对下标进行处理.然后没有第二反应.很好. 在枚举一个数字的时 ...
- loj #6250. 「CodePlus 2017 11 月赛」找爸爸
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最 ...
- [LOJ 6249]「CodePlus 2017 11 月赛」汀博尔
Description 有 n 棵树,初始时每棵树的高度为 H_i,第 i 棵树每月都会长高 A_i.现在有个木料长度总量为 S 的订单,客户要求每块木料的长度不能小于 L,而且木料必须是整棵树(即不 ...
- [LOJ 6248]「CodePlus 2017 11 月赛」晨跑
Description “无体育,不清华”.“每天锻炼一小时,健康工作五十年,幸福生活一辈子” 在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)
从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...
- 「CodePlus 2017 11 月赛」可做题
这种题先二进制拆位,显然改的位置只有每一段确定的数的开头和结尾,只需要对于每一个可决策位置都尝试一下填1和0,然后取min即可. #include<iostream> #include&l ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!
n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...
- LOJ6252. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡! 最短路+bitset
题目传送门 https://loj.ac/problem/6252 https://lydsy.com/JudgeOnline/problem.php?id=5109 题解 首先跑最短路,只保留 \( ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
随机推荐
- docker 部署 zookeeper+kafka 集群
主机三台172.16.100.61172.16.100.62172.16.100.63Docker 版本 当前最新版 # 部署zk有2种方法 ## 注意 \后不要跟空格 一 . 端口映射 172.16 ...
- 学习笔记 | Set
目录 Set Set 前言 不会数据结构选手 当几乎没写过什么数据结构的菜鸡遇上了毒瘤的splay和treap 时间正一点一点地被续走TAT 听说set有时候可以替代treap和splay 那么菜鸡L ...
- PHP处理表单数据的一个安全回顾(记录教训)
曾经看过一个安全文章中写过这么一条 表单输入数据要做 htmlspecialchars_decode 表单输出数据要做htmlspecialchars 当时还不是很理解为什么,自己也没遇到问题,所以就 ...
- markdown语法示例
现在是我在学习Markdown时做的笔记.学完这些Markdown的基本使用已经不成问题. 1. 标题设置(让字体变大,和word的标题意思一样)在Markdown当中设置标题,有两种方式:第一种:通 ...
- Django_事务
介绍 函数说明 from django.db import transaction transaction.atomic # 原子性操作,把一系列操作当做一个整体,错了则集体回退 transactio ...
- Linux读书笔记第一、二章
第一章 Linux内核简介 1.1Unix历史 Unix特点:1.很简洁 2.所有东西都被当成文件对待 3.Unix内核和相关的系统工具软件都是用C语言编写而成 4.进程创建非常迅速 1.2追寻 ...
- sampleFactory(女娲造人)
使用简单工厂模式模拟女娲(Nvwa)造人(Person),如果传入参数M,则返回一个Man对象,如果传入参数W,则返回一个Woman对象,如果传入参数R,则返回一个Robot对象. package c ...
- 使用成员资格管理用户Membership
ASP.NET成员资格使您可以验证和管理Web应用程序的用户信息.它提供验证用户凭据,创建和修改成员资格用户以及管理用户设置(如密码和电子邮件地址)的功能. ASP.NET成员资格主要用于ASP.NE ...
- java中的装箱与拆箱
什么是自动装箱拆箱 基本数据类型的自动装箱(autoboxing).拆箱(unboxing)是自J2SE 5.0开始提供的功能. 一般我们要创建一个类的对象实例的时候,我们会这样: Class a = ...
- Think In Java读书笔记:内部类覆盖及其初始化
本文相关章节:第十章 内部类 10.10 内部类可以被覆盖吗 在读至本节第二个范例代码时(及下方的代码),我对输出结果中的第一个“Egg.Yolk()”很不理解,为什么它会第一个地方输出. 我起初认为 ...