题目

成爷爷一眼秒,\(tql!!!\)

多组询问,求

\[\sum_{i=0}^kC_{n}^i
\]

发现\(k<=n\)啊,于是我们可以把一组询问抽象成一个区间\([k,n]\)

左指针的移动非常好解决,就是加一下\(C_n^k\)减一下\(C_n^k\)就好了

考虑一下右指针的移动,就是\(n+1\)或者\(n-1\)

如果\(n+1\),就是从\(\sum_{i=0}^kC_n^i\)变成了\(\sum_{i=0}^kC_{n+1}^i\)

我们利用组合数的小学生求法,拆开我们的柿子

\[\sum_{i=0}^kC_{n+1}^i=\sum_{i=0}^kC_{n}^i+C_{n}^{i-1}=2\times \sum_{i=0}^kC_{n}^i-C_n^k
\]

如果是\(n-1\),就是求

\[\sum_{i=0}^kC_{n-1}^i=\sum_{i=0}^kC_{n}^i-C_{n-1}^{i-1}
\]

也就是

\[2\times \sum_{i=0}^kC_{n-1}^i-C_{n-1}^k=\sum_{i=0}^kC_{n}^i
\]

发现我们要求的东西都能从\(\sum_{i=0}^kC_n^i\)在\(O(1)\)推过去

于是莫队就没了

成爷爷奇偶性排序\(wa\)了,这告诉我们拒绝玄学

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1e5+5;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const LL mod=1e9+7;
struct Ask{
int l,r,rk;
}q[maxn];
LL fac[maxn],inv[maxn],I2,ans;
int Ans[maxn];
int n,m,sz,L,R;
inline int cmp(Ask A,Ask B) {
if(A.l/sz==B.l/sz) return A.r<B.r;
return A.l<B.l;
}
inline LL ksm(LL a,int b) {
LL S=1;
while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}
return S;
}
inline LL C(int n,int m) {
if(n<m) return 0;
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
inline void add_(int x) {ans+=C(R,x);ans%=mod;}
inline void del_(int x) {ans-=C(R,x);ans=(ans+mod)%mod;}
inline void add(int x) {
ans=(ans*2ll)%mod;
ans=(ans-C(x-1,L)+mod)%mod;
}
inline void del(int x) {
ans=(ans+C(x-1,L))%mod;
ans=(ans*I2)%mod;
}
int main() {
m=read();
for(re int i=1;i<=m;i++)
q[i].r=read(),q[i].l=read(),q[i].rk=i,n=max(n,q[i].r);
fac[0]=1;
for(re int i=1;i<=n;i++)
fac[i]=(fac[i-1]*(LL)i)%mod;
inv[n]=ksm(fac[n],mod-2);
for(re int i=n-1;i>=0;--i)
inv[i]=(inv[i+1]*(LL)(i+1))%mod;
sz=std::sqrt(n);
I2=ksm(2ll,mod-2);
L=1,R=1;ans=2;
std::sort(q+1,q+m+1,cmp);
for(re int i=1;i<=m;i++) {
while(R<q[i].r) add(++R);
while(L>q[i].l) del_(L--);
while(L<q[i].l) add_(++L);
while(R>q[i].r) del(R--);
Ans[q[i].rk]=ans;
}
for(re int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}

【AT987】高橋君的更多相关文章

  1. AT987 高橋君

    AT987 高橋君 给出 \(n,\ k\) ,求 \(\displaystyle\sum_{i=0}^kC_n^k\) , \(T\) 次询问 \(T\leq10^5,\ 0\leq k\leq n ...

  2. 高橋君とホテル / Tak and Hotels

    高橋君とホテル / Tak and Hotels Time limit : 3sec / Stack limit : 256MB / Memory limit : 256MB Score : 700  ...

  3. 高橋君とカード / Tak and Cards

    高橋君とカード / Tak and Cards Time limit : 2sec / Stack limit : 256MB / Memory limit : 256MB Score : 300 p ...

  4. 高橋君とカード / Tak and Cards AtCoder - 2037 (DP)

    Problem Statement Tak has N cards. On the i-th (1≤i≤N) card is written an integer xi. He is selectin ...

  5. AtCoder Beginner Contest 044 C - 高橋君とカード / Tak and Cards

    题目链接:http://abc044.contest.atcoder.jp/tasks/arc060_a Time limit : 2sec / Memory limit : 256MB Score ...

  6. AtCoder Beginner Contest 044 A - 高橋君とホテルイージー / Tak and Hotels (ABC Edit)

    Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement There is a hotel with ...

  7. AtCoder D - 高橋君と見えざる手 / An Invisible Hand 简单思维题

    http://arc063.contest.atcoder.jp/tasks/arc063_b 因为每次都是选取最大值,那么用dp[i]表示第i个数结尾能得到最大是多少. 其实就是用a[i]去减去左边 ...

  8. AtCoder Beginner Contest 022 A.Best Body 水题

    Best Body Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://abc022.contest.atcoder.jp/tasks/abc02 ...

  9. AtCoder-arc060 (题解)

    A - 高橋君とカード / Tak and Cards (DP) 题目链接 题目大意: 有 \(n\) 个数字,要求取出一些数字,使得它们的平均数恰好为 \(x\) ,问有几种取法. 大致思路: 只要 ...

随机推荐

  1. linux命令新建文件

    在命令行输入vi filename就创建了一个叫filename的文件了,如果存在就打开了. 进入vi以后,输入内容,最后按一下esc,再按冒号,输入wq就保存退出了. 新建一个文本文件 vi New ...

  2. AVFoundation-视频录制以及拍照

    一般如果UI和UE在设计时只要求功能,对相机界面没什么要求的话,个人觉得调用系统相机(UIImagePickerController)就可以满足我们的需求比如照相或者录制视频,但是考虑界面美观性,有时 ...

  3. EnyimMemcached(64位)使用实例

    1.安装:http://www.cnblogs.com/dudu/archive/2009/07/19/1526669.html 2.使用 using Enyim.Caching.Configurat ...

  4. windows多线程窗口程序设计

    掌握windows基于消息驱动的窗口应用程序设计的基本方法,掌握窗口程序资源的概念与设计,掌握常用的消息的程序处理方法,掌握文字图形输出相关函数编程.掌握设计的基本方法(选项),掌握时钟消息设计动画程 ...

  5. (利用DOM)在新打开的页面点击关闭当前浏览器窗口

    1.在开发过程中我们前端的用户体验中有时候会要求点击一个按钮,关闭当前浏览器窗口.用html DOM就可做到. 2.注意:本次写法要求在新窗口中关闭. target="_blank" ...

  6. Servlet自动注入Spring容器中的Bean解决方法

    很多情况在进行Web开发的时候需要自己手写Servlet来完成某些功能,而servlet有需要注入Spring容器中的某些bean,这是每次都要手动获取比较麻烦,这里有一个解决方案,只需要写一个ser ...

  7. java网络编程(UDP详解)

    UDP详解 一,TCP/IP协议栈中,TCP协议和UDP协议的联系和区别? 联系: TCP和UDP是TCP/IP协议栈中传输层的两个协议,它们使用网络层功能把数据包发送到目的地,从而为应用层提供网络服 ...

  8. IntelliJ IDEA 2016 完美破解+汉化补丁

    百度网盘下载地址:链接:https://pan.baidu.com/s/1cB6XY-N02eRKgGs1kzvqKQ 密码:6pse IntelliJ IDEA 2016是一款JAVA语言发开发工具 ...

  9. Kriging插值计算

      参考论文:      http://people.ku.edu/~gbohling/cpe940 # -*- coding: utf-8 -*- # ----------------------- ...

  10. Hadoop总结

    背景 Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Mapreduce1 vs YA ...