课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

在之前的练习中,图片比较小,这节课的方法可以应用到更大的图像上。

Fully Connected Networks

在sparse autoencoder(后面会讲到)中,一种设计选择是将输入层与隐藏层fully connect,这种方式对图片小的情况下计算量还

可以接受,但对大图片来说变得不可接受。

Locally Connected Networks

一种简单的解决方式是隐藏层只连接一部分的输入层,即只对特定的输入产生反应。

Convolutions

自然图像有一种stationary的性质,即图像的某个部分的统计信息和该图像的其他部分是一致的,也就是说,在图像某个部分提取的特征可

以应用到图像的其他部分,并且可以在所有的位置上使用同样的特征(不太理解啊)。

更准确的说,我们可以在一副96*96图像上随机提取一个patch(比如8*8)的特征,我们可以将这个8*8的feature detector应用到这副图像的任何地方,

具体说就是,我们将学习到的8*8feature与大图像作convolve,因而在图像的每个位置上都得到一个不同的feature activation value

为了更好理解,给了一个具体的例子。假设已经学到了特征,来自于一个96*96图像上的一个8*8的patch,更近一步,假设这是由一个有100个隐藏单元的

autoencoder完成的。为了得到convolved features,对于96*96的每个8*8区域(参考课程中的动图)。

正式的说法是,给定一个r*c的大图xlarge,我们首先在一个小的a*b的pathces xsmall(从大图中采样得到)上训练一个sparse autoencoder,使及方程

得到k个特征,然后

下部分将要讨论如何pool这些特征,来得到更好的用于分类的特征。

UFLDL 教程学习笔记(四)的更多相关文章

  1. UFLDL 教程学习笔记(四)主成分分析

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  2. UFLDL 教程学习笔记(三)自编码与稀疏性

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  3. UFLDL 教程学习笔记(二)反向传导算法

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  4. UFLDL 教程学习笔记(一)神经网络

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  5. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  6. UFLDL 教程学习笔记(六)主成分分析

    教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...

  7. UFLDL 教程学习笔记(一)

    ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...

  8. UFLDL 教程学习笔记(二)

    课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归 ...

  9. UFLDL深度学习笔记 (四)用于分类的深度网络

    UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使 ...

随机推荐

  1. Linux下vim 快捷键

    vim按d表示剪切 按dd剪切一行 vim命令:命令模式 /关键字 n继续向下查找vim的多行注释: 1.按ctrl + v进入 visual block模式 2.按上下选中要注释的行 3.按大写字母 ...

  2. E. Turn Off The TV Educational Codeforces Round 29

    http://codeforces.com/contest/863/problem/E 注意细节 #include <cstdio> #include <cstdlib> #i ...

  3. mysql 优化之查询缓存(mysql8已经废弃这个功能)

    对于缓存,一般人想到的是 redis.memcache 这些内存型的缓存. 但是实际上 mysql 也提供了缓存,mysql 里面的缓存是查询缓存,可以把我们查询过的语句缓存下来,下一次查询的时候有可 ...

  4. 【转载】C#, VB.NET如何将Excel转换为PDF

    在日常工作中,我们经常需要把Excel文档转换为PDF文档.你是否在苦恼如何以C#, VB.NET编程的方式将Excel文档转换为PDF文档呢?你是否查阅了许多资料,运用了大量的代码,但转换后的效果依 ...

  5. MySQL数据库应用 从入门到精通 学习笔记

    以下内容是学习<MySQL数据库应用 从入门到精通>过程中总结的一些内容提要,供以后自己复现使用. 一:数据库查看所有数据库: SHOW DATABASES创建数据库: CREATE DA ...

  6. 批量更新demo

    因为批量更新数据库的时候,如果数据量太多,就会报错,这时候可以通过逻辑,批量更新,demo如下 @Test public void testbatch() { /** * 批量的值 */ int ma ...

  7. Linux命令-xargs

    比如一个例子 echo "README.md" |cat echo "README.md" |xargs cat 第一个例子只是输出了README.md的文件名 ...

  8. SharePoint 项目的死法(三)

    拙劣的供应商(团队) 坦率来说, 说这个原因需要一点勇气, 但在我从业的经历中, 充斥这大量的这样的案例, 没有什么实施经验的团队, 对产品几乎没什么了解的供应商, 三脚猫的开发人员,之前只会做做微软 ...

  9. iframe元素的学习(笔记)

    什么是iframe:iframe元素即内联框架,iframe是内联的并且承前启后,对于外围的页面,iframe是一个普通的元素,对于iframe里面的内容,又是一个五脏俱全的页面.重下面的写法可以看出 ...

  10. JS 数组 foreach 和 map

    本文地址:http://www.cnblogs.com/veinyin/p/8794677.html  foreach 和 map 都是数组的迭代方法,对数组的每一项执行给定函数,不会改变原数组. 两 ...