题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$

题解:思考一次变换的本质,对$c$做差分,原差分为$c_i-c_{i-1},c_{i+1}-c_i$;对$c_i$做一次变换后为:$c'_i-c_{i-1}=c_{i+1}+c_{i-1}-c_i-c_{i-1}=c_{i+1}-c_i,c_{i+1}-c'_i=c_{i+1}-(c_{i+1}+c_{i-1}-c_i)=c_i-c_{i-1}$,也就是说交换了原差分数组的两位。

所以就把$c$数组差分一下,看是不是和$t$数组相同即可,注意判断$c_1,c_n$是否和$t_1,t_n$相同,因为这两个位置无法做变换。

卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#define maxn 100010
int n;
int s[maxn], t[maxn];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", s + i);
for (int i = 1; i <= n; ++i) scanf("%d", t + i);
if (s[1] != t[1] || s[n] != t[n]) {
puts("No");
return 0;
}
for (int i = n; i + 1; --i) {
s[i] -= s[i - 1];
t[i] -= t[i - 1];
}
std::sort(s + 2, s + n + 1); std::sort(t + 2, t + n + 1);
for (int i = 2; i <= n; ++i) if (s[i] != t[i]) {
puts("No");
return 0;
}
puts("Yes");
return 0;
}

  

[CF1110E]Magic Stones的更多相关文章

  1. CF1110E Magic Stones 差分

    传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...

  2. CF1110E Magic Stones(构造题)

    这场CF怎么这么多构造题…… 题目链接:CF原网 洛谷 题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$.每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c ...

  3. 【CF1110E】 Magic Stones - 差分

    题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...

  4. E. Magic Stones CF 思维题

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  5. Magic Stones CodeForces - 1110E (思维+差分)

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. CF 1110 E. Magic Stones

    E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i] ...

  7. Codeforces.1110E.Magic Stones(思路 差分)

    题目链接 听dalao说很nb,做做看(然而不小心知道题解了). \(Description\) 给定长为\(n\)的序列\(A_i\)和\(B_i\).你可以进行任意多次操作,每次操作任选一个\(i ...

  8. 【Codeforces 1110E】Magic Stones

    Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...

  9. 「日常训练」Magic Stones(CodeForces-1110E)

    题意 给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组. 分析 这种魔法题目我是同样的没做过. ...

随机推荐

  1. Appium+python自动化2-环境搭建(下)

    上一篇android测试开发环境已经准备好, 接下来就是appium的环境安装了.环境安装过程中切勿浮躁,按照步骤一个个来. 环境装好后,可以用真机连电脑,也可以用android-sdk里面的模拟器( ...

  2. 关于Netty的学习前总结

    摘要 前段时间一直在学习netty因为工作忙的原因没有写一个学习的总结,今天抽个空先把总结写了吧.事先声明,本文不会详细的介绍每一个部分不过每个部分都会附上讲解详细的url.本文只是为了解释通Nett ...

  3. linux/Ubuntu系统上安装mysql数据库(附图详解)

    在前面的文章中,我已经分享了如何在Ubuntu系统中安装以及搭建java开发环境,那么当我们需要跟数据打交道的时候,那么就需要在ubuntu系统中安装一个数据库了,那么废话就不多说了,我们这里主要是分 ...

  4. alibaba/fescar 阿里巴巴 开源 分布式事务中间件

    Fescar 是 阿里巴巴 开源的 分布式事务中间件,以 高效 并且对业务 0 侵入 的方式,解决 微服务 场景下面临的分布式事务问题. 示例:https://github.com/windwant/ ...

  5. Elasticsearch的停用词(stopwords)

    1.问题 在使用搜索引擎(Elasticsearch或Solr)作为应用的后台搜索平台的时候,会遇到停用词(stopwords)的问题. 在信息检索中,停用词是为节省存储空间和提高搜索效率,处理文本时 ...

  6. 浏览器初始页面设置及被hao123劫持解决办法

    最近在用浏览器时打开初始页面都是hao123,喵喵喜欢简单干净的页面,就去设置初始页面. 此处放置初始页面参考(并不太难): https://jingyan.baidu.com/article/11c ...

  7. Webrtc源码走读(一)

    阅读event_wrapper.h   event_wrapper_win.cpp 的实现 自己对“事件”这个词没有深的理解,通过看段代码,好像有点感觉,类似与C#的AutoResetEvent

  8. 苹果针对on sale 的APP发的问题邮件

    2017年3月8日 上午8:07 发件人 Apple Dear Developer, Your app, extension, and/or linked framework appears to c ...

  9. js备忘录1

    新建对象 赋值和取值操作 var book={ topic:"JavaScript", fat: true }; book.topic  通过点访问 book["fat& ...

  10. sprint2(第四天)

    由于最近网络不行,更新的代码push不上Github,组员之间又不能clone得到最新的项目,所以这几天都没有更新到Github 燃尽图