题意:将1~2n个数依照顺时针排列好。用一条线将两个数字连接起来要求:线之间不能有交点。同一个点仅仅同意被连一次。

最后问给出一个n,有多少种方式满足条件。

分析:

ans[n]表示n的中的种类数。 规定ans[0] = ans[1] = 1;

如果给出的数是n那么从1開始, 与1之间相连的数与1之间间隔的对数各自是0, 1, 。。n-1, 那么我们就能够将他们切割成两部分,对于每一部分我们分别将其的结果求出,之后再相乘就是间隔对数s(s是0, 。。

n-1)的总的种类数。

最后我们能够总结出ans[n] = ans[0]*ans[n-1]+ans[1]*ans[n-2]+...ans[n-1]*ans[0];即为卡特兰数。

如果给出的是4。那么一共同拥有8个数。依照顺时针排列,我们如果从1開始,那么1能够与2(之间相差0个数), 4(之间相差2个数), 6(之间相差4个数), 8(之间相差6个数)。假如我们知道相差n个数的的种类数,那么我们仅仅须要将他们相加。即为我们所要求的总种类数。

以下我就依照上面的样例即n=4分析一下。

相差为0的时候,我们仅仅须要考虑剩下的三对就可以。则相差为0的种类数就为ans[3]*ans[0],之间相差2的时候我们就吧原有的序列分成了两部分,第一部分仅仅有2个数。第二部分有4个数。那么相差为2的种类数就是ans[2]*ans[1];相差为4的事实上就是上面情况的第一部分和第二部分颠倒了,这样的情况下的种类数是ans[1]*ans[2],相差为6就是第一种情况的颠倒,所以种类数是ans[3]*ans[0];

代码:

#include <cstdio>
#include <cstring>
int ans[102][100]; void table(){
ans[0][0] = ans[1][0] = 1;
int i, j;
for(i = 2; i < 102; i ++){
int c = 0;
for(j = 0; j < 100; j ++){
ans[i][j] = ans[i-1][j]*(4*i-2)+c;
c = ans[i][j]/10;
ans[i][j] %= 10;
}
int z = 0;
for(j = 99; j >= 0; j --){
z= z*10+ans[i][j];
ans[i][j] = z/(i+1);
z %= (i+1);
}
}
}
int main(){
table();
int temp;
while(scanf("%d", &temp), temp != -1){
int i = 99;
while(ans[temp][i] == 0) i --;
while(i >= 0) printf("%d", ans[temp][i]), i--;
printf("\n");
}
return 0;
}

题目链接:

pid=164">http://acm.nyist.net/JudgeOnline/problem.php?pid=164

     http://poj.org/problem?id=2084

nyoj 164&amp;&amp;poj2084 Game of Connections 【卡特兰】的更多相关文章

  1. POJ2084 Game of Connections 卡特兰数 关于卡特兰数经典的几个问题

    Game of Connections Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9128   Accepted: 44 ...

  2. [POJ2084]Game of Connections

      Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7888   Accepted: 3965 Description Thi ...

  3. POJ2084 Game of Connections(数学,dp)

    题目链接. 分析: 简单的 Catalan 数 将x~y编号,设解为 d(x, y), d(x, y) = {d(x+1,i-1)*d(i+1,y)}, 其中 x+1<= i  <= y, ...

  4. (组合数学3.1.2.2)POJ 2084 Game of Connections(卡特兰数公示的实现)

    package com.njupt.acm; import java.math.BigInteger; import java.util.Scanner; public class POJ_2084 ...

  5. POJ 2084 Game of Connections 卡特兰数

    看了下大牛们的,原来这题是卡特兰数,顺便练练java.递归式子:h(0)=1,h(1)=1   h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) ( ...

  6. (Catalan数 大数) Game of Connections poj2084

    Language: Game of Connections Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8837 Accept ...

  7. How to enable remote connections to SQL Server

    <img src="https://miro.medium.com/max/1400/1*18lrHvJ8YtADJDT7hxIThA.jpeg" class="g ...

  8. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  9. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

随机推荐

  1. DOS命令大全(二)

    一般来说dos命令都是在dos程序中进行的,如果电脑中安装有dos程序可以从开机选项中选择进入,在windows 系统中我们还可以从开始运行中输入cmd命令进入操作系统中的dos命令,如下图: 严格的 ...

  2. hihoCoder #1183 : 连通性一·割边与割点(求割边与各点模板)

    #1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...

  3. 每位架构师都应该熟知的 10 个 SOA 设计模式

    这 10 个 SOA 设计模式是如此之重要,其应用是如此之广泛,以至于它们都有些显而易见了. 1. 服务无关 服务无关实现对多种业务通用的逻辑.将服务无关的逻辑分离成离散的服务以方便服务的重用和整合. ...

  4. CVE-2013-2729 Adobe Reader和Acrobat 数字错误漏洞

    这个洞是在论坛里看到的,感觉很有意思,来学习一下.个人感觉IE或者说是浏览器的洞和Adobe洞都是比较难调的,主要是有大量的类难以摸清之间的关系. 这个洞是一个整数溢出的洞,这个不是重点.重点是利用的 ...

  5. 使用EasyWechat快速开发微信公众号支付

    前期准备: 申请微信支付后, 会收到2个参数, 商户id,和商户key.注意,这2个参数,不要和微信的参数混淆.微信参数: appid, appkey, token支付参数: merchant_id( ...

  6. iOS中URL的解码和转义问题

    在iOS开发中,使用NSURLConnection去请求google places api时,如果请求的url中包含中文,则返回的结果为空,URL不能被google识别.NSString *_urlS ...

  7. Java第三阶段学习(一、IO流------File类)

    一.IO概述: 把内存中的数据存入到硬盘(持久化设备)中叫做:输出(写)Output操作.JAVA软件往电脑硬盘上走叫输出. 把硬盘中的数据读取到到内存里叫做:输入(读)Input操作.电脑硬盘上往J ...

  8. Gitlab Issue Tracker and Wiki(一)

    本节内容: 创建第一个问题 创建第一个合并请求 接受合并请求 工作里程碑 在提交中引用问题 创建维基百科页 使用Gollum管理维基百科 一. 创建问题 1. 登陆Gitlab服务器 2. 切换到想要 ...

  9. Ionic入门四:卡片

    近年来卡片(card)的应用越来越流行,卡片提供了一个更好组织信息展示的工具. 针对移动端的应用,卡片会根据屏幕大小自适应大小. 我们可以很灵活的控制卡片的显示效果,甚至实现动画效果. 卡片一般放在页 ...

  10. MVP模型

    MVP模型一般要创建三个文件夹:View.Interactor(Model).Presenter 每个部分都有其接口和实现类,就是为了方便回调 这里做一个登陆界面为例子: 接口: Interactor ...