BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数
Description
求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。
Input
第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
5
1 0
1 1
5 2
100 50
10000 5000
Sample Output
0
1
20
578028887
60695423
我们只需要确定哪些数是匹配的,剩下的数是一个错排
然后我们考虑怎么DP出错排
我们设dpi为i个数的错排方案数
dpi=(i−1)∗(dpi−1+dpi−2))
如果我们当前枚举第i位的数p
如果i就位置p上,剩下的数构成n-2个数的错排
否则就是n-1个数的错排
#include<bits/stdc++.h>
using namespace std;
#define N 1000010
#define Mod 1000000007
#define fu(a,b,c) for(int a=b;a<=c;++a)
int fac[N],inv[N],dp[N];
int T,n,m;
int mul(int a,int b){return 1ll*a*b%Mod;}
int C(int x,int y){return mul(fac[x],mul(inv[y],inv[x-y]));}
int main(){
fac[]=inv[]=inv[]=;
fu(i,,N-)fac[i]=mul(fac[i-],i);
fu(i,,N-)inv[i]=mul(Mod-Mod/i,inv[Mod%i]);
fu(i,,N-)inv[i]=mul(inv[i-],inv[i]);
dp[]=;dp[]=;dp[]=;
fu(i,,N-)dp[i]=mul(dp[i-]+dp[i-],i-);
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",mul(C(n,m),dp[n-m]));
}
return ;
}
BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*的更多相关文章
- bzoj 2425 [HAOI2010]计数 dp+组合计数
[HAOI2010]计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 289[Submit][Status][Discus ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- bzoj4517[Sdoi2016]排列计数(组合数,错排)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1792 Solved: 1111[Submit][Stat ...
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
- BZOJ4517 [Sdoi2016]排列计数 【组合数 + dp】
题目 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- [BZOJ4517] [Sdoi2016] 排列计数 (数学)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)
传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...
- BZOJ4517——[Sdoi2016]排列计数
求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...
随机推荐
- apache配置ssl
1.确认是否安装ssl模块 是否有mod_ssl.so文件 2.生成证书和密钥 linux下 步骤1:生成密钥 命令:openssl genrsa 1024 > server.key 说 ...
- HDU 1827 Summer Holiday
http://acm.hdu.edu.cn/showproblem.php?pid=1827 题意: 听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家 ...
- Thinkphp5 模块的自动生成
首先到根目录下的build.php文件中去 是这样子滴: 然后去public目录中的index.php中去添加代码 这样子: 然后运行项目 就搞定了. 是不是美滋滋! 在public 下index.p ...
- Visual Studio 2013 Ultimate & IIS Express 8.0 错误 [iisexpress.exe”已退出,返回值为 -1073741816 (0xc0000008)] 解决方法
1. 开发环境 Visual Studio 2013 Ultimate IIS 8.0 Express 2. 错误信息 错误提示:iisexpress.exe”已退出,返回值为 -1073741816 ...
- brew 与 nvm
brew 与 nvm 是两个管理软件工具 今天更新了brew结果brew下安装的软件都找不着了.得重新安装,据说brew已经不再更新了.应该是通过github的吧. 结果得重装node与npm,这两 ...
- JavaScript 获取对象属性和方法
ShineJaie 原创整理,转载请注明出处. 一.获取对象属性和方法 Object.keys() 返回对象的可枚举属性和方法的名称数组. Object.getOwnPropertyNames() 返 ...
- 前端打印功能实现及css设置
首先是使用下边代码,实现js局部打印功能.参数dom为需要打印的节点,为了保证页面功能的单一性,最好弹出一个新的预览页面完成打印功能. function print(dom){ var body = ...
- 设计模式--解释器模式C++实现
1定义 给定一门语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子 2类图 角色分析 AbstractExpression抽象解释器,具体的解释任务由各个实现类完成, ...
- Zookeeper在 Linux 系统的安装
安装步骤:第一步:安装 jdk第二步:把 zookeeper 的压缩包上传到 linux 系统.Alt+P 进入 SFTP ,输入 put d:\zookeeper-3.4.6.tar.gz 上传第三 ...
- C++调用Python脚本中的函数
1.环境配置 安装完python后,把python的include和lib拷贝到自己的工程目录下 然后在工程中包括进去 2.例子 先写一个python的测试脚本,如下 这个脚本里面定义了两个函数Hel ...